Penjelasan dengan langkah-langkah:
f'(x) = x² + 2x
f(x) = integral f'(x)
integral (x² + 2x) dx
= x²+¹ + 2x¹+¹ + C
2+1 1+1
f(x) = ⅓x³ + x² + C
f(–2) = 6
⅓(–2)³ + (–2)² + C = 6
–8 + 4 + C = 6
3
–2⅓ + 4 – 6 = – C
–2⅓ – 2 = – C
C = 4⅓
Jadi, fungsi
Jawaban:
Anti Turunan
Diketahui f’(x) = x² + 2x dan f(-2) = 6
Tinggal substitusi deh C = ke bentuk fungsi f(x) =
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
f'(x) = x² + 2x
f(x) = integral f'(x)
integral (x² + 2x) dx
= x²+¹ + 2x¹+¹ + C
2+1 1+1
f(x) = ⅓x³ + x² + C
f(–2) = 6
⅓(–2)³ + (–2)² + C = 6
–8 + 4 + C = 6
3
–2⅓ + 4 – 6 = – C
–2⅓ – 2 = – C
C = 4⅓
Jadi, fungsi
f(x) = ⅓x³ + x² + 4⅓ ✔
Jawaban:
Anti Turunan
Diketahui f’(x) = x² + 2x dan f(-2) = 6
Tinggal substitusi deh C = ke bentuk fungsi f(x) =