Skoro na drodze S = 25 m następuje zmiana prędkości od prędkości V₀ = 9 m/s do prędkości V₁ = 4 m/s, oznacza to, że hamowanie łyżwiarza odbywało się zgodnie z ruchem jednostajnie opóźnionym.
W ruchu takim, zależność na drogę ma postać:
[1] S = V₀*t - 1/2*a*t²
W ruchu takim, zależność na prędkość ma postać:
[2] V₁ = V₀ - a*t
Stąd, wstawiając do równania [1] wyrażenie [2] ale przekształcone tak, aby było zależnością a= f(V, t), czyli do postaci: a = (V₀ -V₁)/t , otrzymamy:
S = V₀*t - 1/2*[(V₀ -V₁)/t]*t²
S = V₀*t - 1/2*[(V₀ -V₁)*t
S = V₀*t - 1/2*V₀*t + 1/2*V₁*t
S = 1/2*V₀*t + 1/2*V₁*t
S = t*1/2*(V₀ + V₁)
t = [2*S]/(V₀ + V₁)
Znając czas, w którym nastąpiło wyhamowanie prędkości łyżwiarza, wyznaczymy wartość przyśpieszenia (albo "opóźnienia" - czyli "ujemnego przyśpieszenia". "Ujemnego" - to znaczy przyśpieszenia o zwrocie przeciwnym do zwrotu wektora prędkości). Np. z zależności [2].
A więc:
V₁ = V₀ - a*t
a * t = V₀ - V₁
a = (V₀ - V₁) / t
a = (V₀ - V₁)/ [(2*S)(V₀ + V₁)]
Znając wyrażenie na przyśpieszenie a - w ruchu jednostajnie opóźnionym, wiedząc, że zgodnie z II zasadą dynamiki Newtona, iloczyn przyśpieszenia i masy równa się sile działającej na ciało. W tym wypadku, siłą działającą na ciało będzie właśnie siła hamująca, którą jest ... SIŁA TARCIA.
Odpowiedź:
Siła tarcia łyżew o lód: Ft = 52 N
Wyjaśnienie:
Skoro na drodze S = 25 m następuje zmiana prędkości od prędkości V₀ = 9 m/s do prędkości V₁ = 4 m/s, oznacza to, że hamowanie łyżwiarza odbywało się zgodnie z ruchem jednostajnie opóźnionym.
W ruchu takim, zależność na drogę ma postać:
[1] S = V₀*t - 1/2*a*t²
W ruchu takim, zależność na prędkość ma postać:
[2] V₁ = V₀ - a*t
Stąd, wstawiając do równania [1] wyrażenie [2] ale przekształcone tak, aby było zależnością a= f(V, t), czyli do postaci: a = (V₀ -V₁)/t , otrzymamy:
S = V₀*t - 1/2*[(V₀ -V₁)/t]*t²
S = V₀*t - 1/2*[(V₀ -V₁)*t
S = V₀*t - 1/2*V₀*t + 1/2*V₁*t
S = 1/2*V₀*t + 1/2*V₁*t
S = t*1/2*(V₀ + V₁)
t = [2*S]/(V₀ + V₁)
Znając czas, w którym nastąpiło wyhamowanie prędkości łyżwiarza, wyznaczymy wartość przyśpieszenia (albo "opóźnienia" - czyli "ujemnego przyśpieszenia". "Ujemnego" - to znaczy przyśpieszenia o zwrocie przeciwnym do zwrotu wektora prędkości). Np. z zależności [2].
A więc:
V₁ = V₀ - a*t
a * t = V₀ - V₁
a = (V₀ - V₁) / t
a = (V₀ - V₁)/ [(2*S)(V₀ + V₁)]
Znając wyrażenie na przyśpieszenie a - w ruchu jednostajnie opóźnionym, wiedząc, że zgodnie z II zasadą dynamiki Newtona, iloczyn przyśpieszenia i masy równa się sile działającej na ciało. W tym wypadku, siłą działającą na ciało będzie właśnie siła hamująca, którą jest ... SIŁA TARCIA.
Zatem:
Ft = m * a
Ft = m * (V₀ - V₁)/[(2*S)(V₀ + V₁)]
Ft = [m * (V₀ - V₁)*(V₀ + V₁)] / (2*S)
Ft = m * (V₀² - V₁²) / (2*S)
A po podstawieniu wartości:
Ft = (40 kg * [(9 m/s)² - (4 m/s)²]) / (2 * 25 m)
Ft = ( 40 kg * (81 m²/s² - 16 m²/s²))/ 50 m
Ft = (40 kg * 65 m²/s²) / 50 m
Ft = (2600 kg*m²/s²)/ 50m
Ft = 52 N