Punkty A = (3,1) h i B = (6,5) h są wierzchołkami trójkąta prostokątnego ABC, w którym ∡BAC = 90°. Wierzchołek C tego trójkąta leży na osi Oy układu współrzędnych. Oblicz współrzędne wierzchołka C.
KD123E12
Odpowiedź:Odpowiedź poniżejSzczegółowe wyjaśnienie:Najlepiej rozwiazać to funkcjami. Mianowicie: wyznaczmy równanie funkcji przechodzącej przez punkty A i B. Można to zrobić układem równań1=3a+b5=6a+b (podstawiam dane za x i y żeby obliczyć a i b dla funkcji)b=1-3a (metoda podstawiania)5=6a+1-3a4=3aa=4/3Teraz wyznaczenie b1=3*(4/3)+b-3=bNasza funkcja y=4/3x-3Wierzchołek leży na prostej prostopadłej do tej przez nas wyznaczonej i dodatkowo wiemy, że współrzędna y = 0Zatem y=-3/4x+bZa x i y podstawmy punkt A żeby mieć kompletną funkcję (punkt A też się w tej prostej zawiera)1=-3/4*3+b5=bCzyli funkcja prostopadła y=-3/4x+5Zatem punkt C mający współrzędną y = 0 ma współrzędną x:0=-3/4x+5-5=-3/4x20/3=x czyli 6 i 2/3C=(20/3, 0)