Przedstaw w postaci jednego logarytmu nwyrażenie:
a) log x + 2log(x+1)
b) 1 +
c)
d)
a)logx+log(x+1)²=log(2x²+2x+1)
b)1=log₂2, wieć 1+log₂(x+1)=log₂2(x+1)
c)2log₂x-2=log₂x²-log₂4=log₂(x²/4)
d)3-log₀₅x=log₀₅⅛-log₀₅x=log₀₅(⅛/x)
a)
log x + 2 log( x + 1) = log x + log (x +1)^2 = log [ x* (x + 1)^2 ]
b)
1 + log 2 ( x + 1) = log 2 (2) + log 2 ( x + 1) = log 2 [ 2*(x + 1)] = log 2 ( 2x + 2)
2 log 2 (x) - 2 = log 2 ( x^2 ) - log 2 ( 4) = log 2 [ x^2/ 4]
3 - log 0,5 (x) = log 0,5 ( 1/8 ) - log 0,5 (x) = log 0,5 [ (1/8) / x] = log 0,5 [ 1/(8x) ]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)logx+log(x+1)²=log(2x²+2x+1)
b)1=log₂2, wieć 1+log₂(x+1)=log₂2(x+1)
c)2log₂x-2=log₂x²-log₂4=log₂(x²/4)
d)3-log₀₅x=log₀₅⅛-log₀₅x=log₀₅(⅛/x)
a)
log x + 2 log( x + 1) = log x + log (x +1)^2 = log [ x* (x + 1)^2 ]
b)
1 + log 2 ( x + 1) = log 2 (2) + log 2 ( x + 1) = log 2 [ 2*(x + 1)] = log 2 ( 2x + 2)
c)
2 log 2 (x) - 2 = log 2 ( x^2 ) - log 2 ( 4) = log 2 [ x^2/ 4]
d)
3 - log 0,5 (x) = log 0,5 ( 1/8 ) - log 0,5 (x) = log 0,5 [ (1/8) / x] = log 0,5 [ 1/(8x) ]