September 2018 0 36 Report

Prosze o Pomoc !

Rozwiąż układy równań metodą podstawiania :

a.

{2x-y=10

x+y=-17

b.

{3m+n=9

2m-5n=-11

c.

{4a-2=b

3a+7b=1,5

d.

{5x=4-2y

4x+y=3

e.

{6x-3y=9

x+5y=-9,5

Prosze o Poprawne odpowiedzi :)

Dziękuje z góry :*

Reklama

Odpowiedzi

Kaziu12311
Najlepsza Odpowiedź!
Kaziu12311

a)

\left \{ {{2x-y=10} \atop {x+y=-17}} \right\ \\ \left \{ {{2(17-y)-y=10} \atop {x=-17-y}} \right\ \\

></p><p> </p><p>b)</p><p><img src=

\left \{ {{n=9-3m} \atop {2m-45+15m=-11}} \right\ \\ \left \{ {{n=9-3m} \atop {17m=-11+45}} \right\ \\ \left \{ {{n=9-3m} \atop {17m=34}} \right\ \\

\left \{ {{n=9-3m} \atop {m=2}} \right\ \\ \left \{ {{n=9-3*2} \atop {m=2}} \right\ \\ \left \{ {{n=9-6} \atop {m=2}} \right\ \\ \left \{ {{n=3} \atop {m=2}} \right\ \\

 

c)

\left \{ {{4a-2=b} \atop {3a+7b=1,5}} \right\ \\ \left \{ {{b=4a-2} \atop {3a+7(4a-2)=1,5}} \right\ \\

\left \{ {{b=4a-2} \atop {3a+28a-14=1,5}} \right\ \\ \left \{ {{b=4a-2} \atop {31a=15,5}} \right\ \\

\left \{ {{b=4(\frac{1}{2})-2} \atop {a=\frac{1}{2}}} \right\ \\ \left \{ {{b=2-2} \atop {a=\frac{1}{2}}} \right\ \\ \left \{ {{b=0} \atop {a=\frac{1}{2}}} \right\ \\

 

d)

\left \{ {{5x=4-2y} \atop {4x+y=3}} \right\ \\ \left \{ {{5x=4-2(3-4x)} \atop {y=3-4x}} \right\ \\ \left \{ {{5x=4-6+8x} \atop {y=3-4x}} \right\ \\

\left \{ {{5x-8x=-2} \atop {y=3-4x}} \right\ \\ \left \{ {{-3x=-2} \atop {y=3-4x}} \right\ \\

\left \{ {{x=\frac{2}{3}} \atop {y=3-4(\frac{2}{3})}} \right\ \\ \left \{ {{x=\frac{2}{3}} \atop {y=3-\frac{8}{3}}} \right\ \\ \left \{ {{x=\frac{2}{3}} \atop {y=\frac{1}{3}}} \right\ \\

 

e)

\left \{ {{6x-3y=9} \atop {x+5y=-9,5}} \right\ \\ \left \{ {{6(-9,5-5y)-3y=9} \atop {x=-9,5-5y}} \right\ \\

\left \{ {{-57-30y-3y=9} \atop {x=-9,5-5y}} \right\ \\ \left \{ {{-33y=9+57} \atop {x=-9,5-5y}} \right\ \\ \left \{ {{-33y=66} \atop {x=-9,5-5y}} \right\ \\

\left \{ {{y=-2} \atop {x=-9,5-5y}} \right\ \\ \left \{ {{y=-2} \atop {x=-9,5-5*(-2)}} \right\ \\ \left \{ {{y=-2} \atop {x=-9,5+10}} \right\ \\ \left \{ {{y=-2} \atop {x=\frac{1}{2}}} \right\ \\


More Questions From This User See All

Recommend Questions



Life Enjoy

" Life is not a problem to be solved but a reality to be experienced! "

Get in touch

Social

© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.