proszę uzasadnić słuszność twierdzenia
√(8+2√3) =√(4+√13)+√(4-√13) /²
[√(8+2√3) ]² = [ √(4+√13)+√(4-√13) ]²
| 8+2√3| = |4+√13| + 2 * √(4+√13) * √(4-√13) + |4-√13|
| 8+2√3| = |4+√13| + 2 * √[(4+√13) *(4-√13)] + |4-√13|
8 + 2√3 = 4 + √13 + 2 * √(16 - 13) + 4 - √13
8 + 2√3 = 8 + 2 * √3
8 + 2√3 = 8 + 2√3
L = P
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
√(8+2√3) =√(4+√13)+√(4-√13) /²
[√(8+2√3) ]² = [ √(4+√13)+√(4-√13) ]²
| 8+2√3| = |4+√13| + 2 * √(4+√13) * √(4-√13) + |4-√13|
| 8+2√3| = |4+√13| + 2 * √[(4+√13) *(4-√13)] + |4-√13|
8 + 2√3 = 4 + √13 + 2 * √(16 - 13) + 4 - √13
8 + 2√3 = 8 + 2 * √3
8 + 2√3 = 8 + 2√3
L = P