Zad2) Obw = a + b + 2c; a,b -dł. podstaw trapezu c- dł. ramion trapezu Obw = 200cm a / b = 1/4 b= 4a W czworokącie , opisanym na okręgu , sumy długości przeciwległych boków ,są równe.
a+ b = c+c a+b = 2c a + 4a = 2c 5a =2c /:2 c= 5a/2 200 = a + b +2c 200 = a +4a + 2 x 5a/2 200 = 5a + 5a 200 =10a /:10 a = 10 cm b= 4a = 4 x 10 cm =40 cm c= 5a/2 = 5 x 10 cm /2 = 50 cm /2 =25cm Zad3) Obw ABCD = 20cm; Obw A' B' C' D' = 2 x 2cm + 2 x 5cm = 4cm + 10cm = 14cm ;
a,b -dł. boków prostokąta ABCD , a < b 20 = 2a +2b 20 = 2( a+b) /:2 10 = a+b b= 10 -a
2/ 4 = a/b 2b = 4a 2 ( 10 -a) =4a 20 - 2a =4a 6a = 20/:6 a = 20/6 = 3 i 2/6 = 3 i 1/3 b = 10 - 3 i 1/3 = 6 i 2/3 P ABCD = a x b = 3 i 1/3 x 6 i 2/3 = 10/3 x 20/3 = 200/9 = 22 i 2/9 cm²
Zad4) k II l II m Korzystam z tw. Talesa 8/y = 8 + 6 /10 8 / y = 14 / 10 14y = 80 /: 14 y = 80/14 = 40 / 7 = 5 i 5/7
x/y = x +5 /10 x / 40/7 = x +5 /10 10x = 40/7 x (x+5) 10x = 40/7x + 200/7 /x 7 70x = 40x + 200 /- 40x 30x =200 / : 30 x = 20/3 = 6 i 2/3
z/12 = x / 8 8z = 12x /:8 z = 12/8 x = 12/8 x 20/3 = 3/2 x 20/3 = 10 Zad5) IABI =6 ICDI =4
IADI =3
3/6 = 2/ x 3x = 12 /: 3 x = 4 3/4 = 2 / y 3y = 8 /3 y =8/3 = 2 i 2/3 P(ABCD) = 1/2 x ( IABI + ICDI) x IADI = 1/2 x ( 6 + 4) x 3 = 1/2 x 10 x 3 = 5 x 3 = 15 cm ² ; pole trapezu ABCD Pole niezakreskowanego trapezu = 1/2 x ( 4 + 8/3 ) x 2 = 1/2 x(12/3 + 8/3) x 2 = 20/3 = 6 i 2/3 cm²
Pole zakreskowanej figury = 15 cm² - 6 i 2/3cm² = 15 - 20/3 = 45/3 - 20/3 = 25/3 = 8 i 1/3 cm²
α + 110⁰ =180⁰
α = 180⁰ -110⁰ =70⁰
α + β =180⁰ ; 70⁰ + β = 180⁰ , β = 180⁰ - 70⁰ = 110⁰
γ + 93⁰ =180° ; γ = 180⁰ -93⁰ = 87⁰
Zad2)
Obw = a + b + 2c;
a,b -dł. podstaw trapezu
c- dł. ramion trapezu
Obw = 200cm
a / b = 1/4
b= 4a
W czworokącie , opisanym na okręgu , sumy długości przeciwległych boków ,są równe.
a+ b = c+c
a+b = 2c
a + 4a = 2c
5a =2c /:2
c= 5a/2
200 = a + b +2c
200 = a +4a + 2 x 5a/2
200 = 5a + 5a
200 =10a /:10
a = 10 cm
b= 4a = 4 x 10 cm =40 cm
c= 5a/2 = 5 x 10 cm /2 = 50 cm /2 =25cm
Zad3)
Obw ABCD = 20cm;
Obw A' B' C' D' = 2 x 2cm + 2 x 5cm = 4cm + 10cm = 14cm ;
a,b -dł. boków prostokąta ABCD , a < b
20 = 2a +2b
20 = 2( a+b) /:2
10 = a+b
b= 10 -a
2/ 4 = a/b
2b = 4a
2 ( 10 -a) =4a
20 - 2a =4a
6a = 20/:6
a = 20/6 = 3 i 2/6 = 3 i 1/3
b = 10 - 3 i 1/3 = 6 i 2/3
P ABCD = a x b = 3 i 1/3 x 6 i 2/3 = 10/3 x 20/3 = 200/9 = 22 i 2/9 cm²
Zad4)
k II l II m
Korzystam z tw. Talesa
8/y = 8 + 6 /10
8 / y = 14 / 10
14y = 80 /: 14
y = 80/14 = 40 / 7 = 5 i 5/7
x/y = x +5 /10
x / 40/7 = x +5 /10
10x = 40/7 x (x+5)
10x = 40/7x + 200/7 /x 7
70x = 40x + 200 /- 40x
30x =200 / : 30
x = 20/3 = 6 i 2/3
z/12 = x / 8
8z = 12x /:8
z = 12/8 x = 12/8 x 20/3 = 3/2 x 20/3 = 10
Zad5)
IABI =6
ICDI =4
IADI =3
3/6 = 2/ x
3x = 12 /: 3
x = 4
3/4 = 2 / y
3y = 8 /3
y =8/3 = 2 i 2/3
P(ABCD) = 1/2 x ( IABI + ICDI) x IADI = 1/2 x ( 6 + 4) x 3 = 1/2 x 10 x 3 = 5 x 3 = 15 cm ² ; pole trapezu ABCD
Pole niezakreskowanego trapezu = 1/2 x ( 4 + 8/3 ) x 2 = 1/2 x(12/3 + 8/3) x 2 = 20/3 = 6 i 2/3 cm²
Pole zakreskowanej figury = 15 cm² - 6 i 2/3cm² = 15 - 20/3 = 45/3 - 20/3 = 25/3 = 8 i 1/3 cm²