Odpowiedź:
zad 1
A = ( - 8 , 0 ) , B = (4 , 9 )
xa = - 8 , xb = 4 , ya = 0 , yb = 9
(xb - xa)(y - ya) = (yb - ya)(x - xa)
(4 + 8)(y - 0) = (9 - 0)(x + 8)
12y = 9(x + 8)
12y = 9x + 72
y = (9/12)x + 72/12
y = (3/4)x + 6
zad 2
A = (- 2 , - 3 ) , B = (6 , - 5)
xa = - 2 , xb = 6 , ya = - 3 , yb = - 5
S - środek okręgu = (xs , ys)
xs = (xa + xb)/2 = (- 2 + 6)/2 = 4/2 = 2
ys = (ya + yb)/2 = (- 3 - 5)/2 = - 8/2 = - 4
S = (2 , - 4 )
IABI - długość średnicy = √[(xb - xa)² + (yb - ya)²] = √[(6 + 2)² + (- 5 + 3)²] =
= √[8² + (- 2)²] = √(64 + 4) = √68 = √(4 * 17) = 2√17
r - promień okręgu = 1/2 * IABI = 1/2 * 2√17 = √17
Równanie okręgu
(x - xs)² + (y - ys)² = r²
(x - 2)² + (y + 4)² = (√17)²
(x - 2)² + (y + 4)² = 17
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
zad 1
A = ( - 8 , 0 ) , B = (4 , 9 )
xa = - 8 , xb = 4 , ya = 0 , yb = 9
(xb - xa)(y - ya) = (yb - ya)(x - xa)
(4 + 8)(y - 0) = (9 - 0)(x + 8)
12y = 9(x + 8)
12y = 9x + 72
y = (9/12)x + 72/12
y = (3/4)x + 6
zad 2
A = (- 2 , - 3 ) , B = (6 , - 5)
xa = - 2 , xb = 6 , ya = - 3 , yb = - 5
S - środek okręgu = (xs , ys)
xs = (xa + xb)/2 = (- 2 + 6)/2 = 4/2 = 2
ys = (ya + yb)/2 = (- 3 - 5)/2 = - 8/2 = - 4
S = (2 , - 4 )
IABI - długość średnicy = √[(xb - xa)² + (yb - ya)²] = √[(6 + 2)² + (- 5 + 3)²] =
= √[8² + (- 2)²] = √(64 + 4) = √68 = √(4 * 17) = 2√17
r - promień okręgu = 1/2 * IABI = 1/2 * 2√17 = √17
Równanie okręgu
(x - xs)² + (y - ys)² = r²
(x - 2)² + (y + 4)² = (√17)²
(x - 2)² + (y + 4)² = 17