Proszę o rozwiązanie tych zadań...
1.
a) 12 stopień
b) 17 stopien
c) 3 stopień
2.
W(x) = x^4 + 7x - 1
Jest to wielomian stopnia 4, współczynniki to: 1, 0, 0, 7, -1
3.
W(x) = -x^3 + 3x^2 - 1
W(-2) = -(-2)^3 + 3 * (-2)^2 - 1 = 8 + 12 - 1 = 19
W(-1) = -(-1)^3 + 3 * (-1)^2 - 1 = 1 + 3 - 1 = 3
W(4) = - 4^3 + 3 * 4^2 - 1 = -64 + 48 - 1 = -17
W(3) = - 3^3 + 3 * 3^2 - 1 = -27 + 27 - 1 = -1
4.
A) W(x) + P(x) = 3x² - 2x + 1 + 4x² - 2x + 5 = 7x² - 4x + 6
b) W(x) - P(x) = 3x² - 2x + 1 - 4x² + 2x - 5 = -x² - 4
c) W(x) * P(x) = (3x² - 2x + 1) * (4x² - 2x + 5 ) = 12x^4 - 3x³ + 15x² - 8x³ + 4x² - 10x + 4x² - 2x + 5 = 12x^4 - 11x³ + 23x² + 8x + 5
5.
W(x) - F(x) = H(x)
x³ + ax² + 3x + 1 - 2x² - bx + 4 = x³ - 7x² + 8x + 5
x³ + (a - 2)x²+ (3 - b)x + 5 = x³ - 7x² + 8x + 5
a - 2 = -7
a = -7 + 2
a = -5
3 - b = 8
b = 3 - 8
b = -5
6.
x² - 4x + 7
------------------
( x³ - x² - 5x + 21) : (x + 3)
-x³ - 3x²
------------
-4x² - 5x
4x² + 12x
----------------
-7x + 21
7x - 21
= =
3x - 8
---------------------------
(3x² - 2x + 1) : (x + 2)
-3x² - 6x
-------------
-8x + 1
8x +16
-----------------
17
7.
W(x) = x³ - x² + 3x - 3
W(x) = x²(x - 1) + 3(x - 1)
W(x) = (x - 1)(x² + 3)
x - 1 = 0 lub x² + 3 = 0
x = 1
odp. Tylko 1 jest pierwiastkiem naszego wielomianu
8.
W(x) = x^4 + 2x³ + ax - 12
W(r) = 0 więc
W(-2) = (-2)^4 + 2 * (-2)³ + a * (-2) - 12 = 16 + (-16) - 2a - 12 = -2a - 12
-2a - 12 = 0
-2a = 12
a = -6
9.
a)
W(x) = (x + 2)(x - 5)x
x + 2 = 0 lub x - 5 = 0 lub x = 0
x = -2 lub x = 5 lub x = 0
odp. Pierwiastki to: -2, 0 , 5
b)
P(x) = (x² - 16)(x + 3)(x - 7)
P(x) = (x - 4)(x +4)(x + 3)(x - 7)
x = 4 lub x = -4 lub x = -3 lub x = 7
odp. Pierwiastki to: -4, -3, 4, 7
c)
Q(x) = (x² + 4x - 5)(x² + 5)
x² + 4x - 5
Δ = 16 + 20 = 36
√Δ = 6
x1 = (-4 - 6) / 2 = -5
x2 = (-4 + 6) / 2 = 2 / 2 = 1
x² + 5
Δ = 0 - 20 = -20 < 0
nie ma pierwiastków
odp. Pierwiaski to: -5, 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1.
a) 12 stopień
b) 17 stopien
c) 3 stopień
2.
W(x) = x^4 + 7x - 1
Jest to wielomian stopnia 4, współczynniki to: 1, 0, 0, 7, -1
3.
W(x) = -x^3 + 3x^2 - 1
W(-2) = -(-2)^3 + 3 * (-2)^2 - 1 = 8 + 12 - 1 = 19
W(-1) = -(-1)^3 + 3 * (-1)^2 - 1 = 1 + 3 - 1 = 3
W(4) = - 4^3 + 3 * 4^2 - 1 = -64 + 48 - 1 = -17
W(3) = - 3^3 + 3 * 3^2 - 1 = -27 + 27 - 1 = -1
4.
A) W(x) + P(x) = 3x² - 2x + 1 + 4x² - 2x + 5 = 7x² - 4x + 6
b) W(x) - P(x) = 3x² - 2x + 1 - 4x² + 2x - 5 = -x² - 4
c) W(x) * P(x) = (3x² - 2x + 1) * (4x² - 2x + 5 ) = 12x^4 - 3x³ + 15x² - 8x³ + 4x² - 10x + 4x² - 2x + 5 = 12x^4 - 11x³ + 23x² + 8x + 5
5.
W(x) - F(x) = H(x)
x³ + ax² + 3x + 1 - 2x² - bx + 4 = x³ - 7x² + 8x + 5
x³ + (a - 2)x²+ (3 - b)x + 5 = x³ - 7x² + 8x + 5
a - 2 = -7
a = -7 + 2
a = -5
3 - b = 8
b = 3 - 8
b = -5
6.
x² - 4x + 7
------------------
( x³ - x² - 5x + 21) : (x + 3)
-x³ - 3x²
------------
-4x² - 5x
4x² + 12x
----------------
-7x + 21
7x - 21
------------
= =
3x - 8
---------------------------
(3x² - 2x + 1) : (x + 2)
-3x² - 6x
-------------
-8x + 1
8x +16
-----------------
17
7.
W(x) = x³ - x² + 3x - 3
W(x) = x²(x - 1) + 3(x - 1)
W(x) = (x - 1)(x² + 3)
x - 1 = 0 lub x² + 3 = 0
x = 1
odp. Tylko 1 jest pierwiastkiem naszego wielomianu
8.
W(x) = x^4 + 2x³ + ax - 12
W(r) = 0 więc
W(-2) = (-2)^4 + 2 * (-2)³ + a * (-2) - 12 = 16 + (-16) - 2a - 12 = -2a - 12
-2a - 12 = 0
-2a = 12
a = -6
9.
a)
W(x) = (x + 2)(x - 5)x
x + 2 = 0 lub x - 5 = 0 lub x = 0
x = -2 lub x = 5 lub x = 0
odp. Pierwiastki to: -2, 0 , 5
b)
P(x) = (x² - 16)(x + 3)(x - 7)
P(x) = (x - 4)(x +4)(x + 3)(x - 7)
x = 4 lub x = -4 lub x = -3 lub x = 7
odp. Pierwiastki to: -4, -3, 4, 7
c)
Q(x) = (x² + 4x - 5)(x² + 5)
x² + 4x - 5
Δ = 16 + 20 = 36
√Δ = 6
x1 = (-4 - 6) / 2 = -5
x2 = (-4 + 6) / 2 = 2 / 2 = 1
x² + 5
Δ = 0 - 20 = -20 < 0
nie ma pierwiastków
odp. Pierwiaski to: -5, 1