proszę o rozwiązanie trzech zadań z ciągów geometrycznych, daję naaj! :)
z.1
a1 = 1
a2 = 1/2
q = 1/2
S10 = a1*[1 - q^10]/[1 - q] = 1*[1 - (1/2)^10]/[ 1 -1/2]
S10 = [ 1 - 1/(2^10)]/(1/2) = 2* [ 1 - 1/1024] = 2*[ 1024/1024 - 1/1024]
S10 = 2*(1023/1024) = 2046/1024 < 2
Odp.Nie
=============
z.2
a1 = 27
a3 = 12
a) a3 = a1*q^2 --> q^2 = a3: a1 = 12/27 = 4/9
zatem q = 2/3
================
b) an = a1*q^(n-1) = 27*(2/3)^(n-1) = 27*(2/3)^n * (2/3)^(-1)
an = 27*(3/2)*(2/3)^n = (81/2)* (2/3)^n
Odp. an = (81/2)*(2/3)^n
========================
c) S7 = a1*[1 - q^7]/[1 - q] = 27*[1 - (2/3)^7]/[1 - 2/3]
S7 = 27*[1 - 128/2187]/(1/3) = 27*3*(2059/2187) = 2059/27
===========================================================
z.3
a1 = 8
q = 1,5 = 3/2
Sn = 65
Sn = 8*[1 - (3/2)^n]/[ 1 - (3/2)] = 8*[1 - (3/2)^n] /(-1/2)
Sn = -16*[ 1 -(3/2)^n]
czyli
-16 *[ 1 - (3/2)^n] = 65
-16 + 16*(3/2)^n = 65
16*(3/2)^n = 81
(3/2)^n = 81/16
n = 4
Odp. Trzeba dodać 4 wyrazy tego ciągu.
=======================================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
z.1
a1 = 1
a2 = 1/2
q = 1/2
S10 = a1*[1 - q^10]/[1 - q] = 1*[1 - (1/2)^10]/[ 1 -1/2]
S10 = [ 1 - 1/(2^10)]/(1/2) = 2* [ 1 - 1/1024] = 2*[ 1024/1024 - 1/1024]
S10 = 2*(1023/1024) = 2046/1024 < 2
Odp.Nie
=============
z.2
a1 = 27
a3 = 12
a) a3 = a1*q^2 --> q^2 = a3: a1 = 12/27 = 4/9
zatem q = 2/3
================
b) an = a1*q^(n-1) = 27*(2/3)^(n-1) = 27*(2/3)^n * (2/3)^(-1)
an = 27*(3/2)*(2/3)^n = (81/2)* (2/3)^n
Odp. an = (81/2)*(2/3)^n
========================
c) S7 = a1*[1 - q^7]/[1 - q] = 27*[1 - (2/3)^7]/[1 - 2/3]
S7 = 27*[1 - 128/2187]/(1/3) = 27*3*(2059/2187) = 2059/27
===========================================================
z.3
a1 = 8
q = 1,5 = 3/2
Sn = 65
Sn = 8*[1 - (3/2)^n]/[ 1 - (3/2)] = 8*[1 - (3/2)^n] /(-1/2)
Sn = -16*[ 1 -(3/2)^n]
czyli
-16 *[ 1 - (3/2)^n] = 65
-16 + 16*(3/2)^n = 65
16*(3/2)^n = 81
(3/2)^n = 81/16
n = 4
Odp. Trzeba dodać 4 wyrazy tego ciągu.
=======================================