Proszę o pomoc.Rozłóż wielomian na czynniki. Tak bede oznaczala do potęgi którejś tam : przykład do potęgi 2: ^2
a) 8x^3+1
b) 4x^2 + 4x+1
c) 3x^2-2
d) (x-1)^3 -8
e) (x-1) ^2 - (x+1) ^2
f) (2x+1)^2 -2(2x+1)+1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
8 x^3 + 1 = (2x)^3 + 1^3 = ( 2x + 1)*( 4x^2 - 2x + 1)
delta = ( -2)^2 - 4*4*1 = 4 - 16 < 0 , więc 4 x^2 - 2 x + 1 nie da się już rozłożyć.
Korzystamy z wzoru
a^3 + b^3 = ( a + b)*( a^2 - a*b + b^2))
a = 2x , b = 1
-------------------------------------------------
b)
4 x^2 + 4 x + 1 = ( 2 x + 1)^2 = ( 2 x + 1)*( 2 x + 1)
Korzystamy z wzoru
a^2 + 2a*b + b^2 = ( a + b)^2
---------------------------------------------------------
c)
3 x^2 - 2 = 3*( x + p(6)/3)*( x - p(6)/3 )
bo
delta = 0^2 - 4*3*(-2) = 24 = 4 *6
p( delty) = 2 p(6)
x1 = [ 0 - 2 p(6)]/6 = - p(6)/3
x2 = [ 0 + 2 p(6)]/6 = p(6)/3
===============================
d)
( x - 1)^3 - 8 = ( x -1)^3 - 2^3 = ( x - 1 - 2)*( (x-1)^2 + (x-1)*2 + 2^2) =
= ( x - 3)*(x^2 - 2 x + 1 + 2 x - 2 + 4) = ( x - 3)*(x^2 + 3)
===================================================
Korzystamy z wzoru
a^3 - b^3 = ( a - b)*( a^2 + a*b + b^2)
a = x - 1 ; b = 2
------------------------------------------------------------------------------
e)
( x - 1)^2 - ( x + 1)^2 = [ ( x - 1) - (x +1)] *[ ( x - 1) + ( x + 1)] =
= - 2*(2 x ) = - 4 x
=================
Korzystamy z wzoru
a^2 - b^2 = ( a - b)*( a + b)
a = x - 1 ; b = x + 1
-----------------------------------------------------
f)
( 2 x + 1)^2 - 2*( 2x + 1) + 1 = ( 2x + 1) - 1)^2 = ( 2 x) ^2 = 4 x^2
=============================================================
Korzystamy z wzoru
a^2 - 2 a*b + b^2 = ( a - b)^2
a = 2x + 1; b = 1
-----------------------------------------------------------------------------------------
Wzory skróconego mnożenia:
(a+b)²=a²+2ab+b² - kwadrat sumy;
(a-b)²=a²-2ab+b² - kwadrat różnicy;
a²-b²=(a-b)(a+b) - różnica kwadratów;
(a+b)³=a³+3a²b+3ab²+b³ - sześcian sumy;
(a-b)³=a³-3a²b+3ab²-b³ - sześcian różnicy;
a³+b³=(a+b)(a²-ab+b²) - suma sześcianów;
a³-b³=(a-b)(a²+ab+b²) - różnica sześcianów;
===============================
a) 8x^3+1=(2x+1)(4x²-x+1)
b) 4x^2 + 4x+1=(2x+1)²
c) 3x^2-2=3(x²-2/3)=3(x-√[2/3])(x+√[2/3])=3(x-√6/3)(x+√6/3)
d) (x-1)^3 -8=(x-1-(-2))[(x-1)²+(x-1)*2+(-2)²]=(x+1)(x²-2x+1+2x-2+4)=(x+1)(x²+3)
e) (x-1) ^2 - (x+1) ^2=[(x-1)+(x+1)][(x-1)-(x+1)]=2x*(-2)=-4x
f) (2x+1)^2 -2(2x+1)+1=[(2x+1)-1]²=(2x)²=4x²