Prosta l przecina okrąg x2+y2=20 w punktach A i B. Oblicz długość cięciwy AB: a)l:y=2x b)l:y=x+2 c)l:y=-x-6
a)
x^2 + y^2 = 20
y = 2x
---------------------
x^2 + (2x)^2 = 20
x^2 + 4 x^2 = 20
5 x^2 = 20 / : 5
x^2 = 4
x = - 2 lub x = 2
================
zatem
y = 2*(-2) = - 4 lub y = 2*2 = 4
czyli
A = (-2; -4), B = ( 2; 4)
I AB I^2 = ( 2 - (-2))^2 + ( 4 - (-4))^2 = 4^2 + 8^2 = 16 + 64 = 80 = 16*5
więc
I AB I = 4 p(5)
========================
b)
y =x +2
----------------------
x^2 + ( x + 2)^2 = 20
x^2 + x^2 + 4 x + 4 = 20
2 x^2 + 4 x - 16 = 0 / : 2
x^2 + 2x - 8 = 0
--------------------
delta = 2^2 - 4*1*(-8) = 4 + 32 = 36
p(delty ) = 6
x = [ - 2 - 6]/2 = - 8/2 = - 4
lub
x = [ -2 + 6 ]/2 = 4/2 = 2
y = -4 + 2 = - 2 lub y = 2 + 2 = 4
Mamy: A = ( -4; -2) , B = ( 2; 4)
I AB I^2 = ( 2 - (-4))^2 + ( 4 - (-2))^2 = 6^2 + 6^2 = 36 + 36 = 36*2
I AB I = 6 p(2)
=============
c)
y = - x - 6
x^2 + ( - x - 6)^2 = 20
x^2 + x^2 + 12 x + 36 = 20
2 x^2 + 12 x + 16 = 0 / : 2
x^2 + 6 x + 8 = 0
delta = 6^2 - 4*1*8 = 36 - 32 = 4
p(delty) = 2
x = [ -6 - 2]/2 = -8/2 = - 4
x = [ - 6 + 2]/2 = -4/2 = - 2
y = -( -4) - 6 = 4 - 6 = - 2
y = - ( -2) - 6 = 2 - 6 = - 4
A = ( -4; -2) , B = (-2; - 4)
I AB I^2 = ( - 2 - (-4))^2 + ( -4 - (-2))^2 = 2^2 + (-2)^2 = 4 + 4 = 4*2
I AB I = 2 p(2)
=======================
p(2) - pierwiastek kwadratowy z 2
p(5) - pierwiastek kwadratowy z 5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
x^2 + y^2 = 20
y = 2x
---------------------
x^2 + (2x)^2 = 20
x^2 + 4 x^2 = 20
5 x^2 = 20 / : 5
x^2 = 4
x = - 2 lub x = 2
================
zatem
y = 2*(-2) = - 4 lub y = 2*2 = 4
czyli
A = (-2; -4), B = ( 2; 4)
I AB I^2 = ( 2 - (-2))^2 + ( 4 - (-4))^2 = 4^2 + 8^2 = 16 + 64 = 80 = 16*5
więc
I AB I = 4 p(5)
========================
b)
x^2 + y^2 = 20
y =x +2
----------------------
x^2 + ( x + 2)^2 = 20
x^2 + x^2 + 4 x + 4 = 20
2 x^2 + 4 x - 16 = 0 / : 2
x^2 + 2x - 8 = 0
--------------------
delta = 2^2 - 4*1*(-8) = 4 + 32 = 36
p(delty ) = 6
x = [ - 2 - 6]/2 = - 8/2 = - 4
lub
x = [ -2 + 6 ]/2 = 4/2 = 2
więc
y = -4 + 2 = - 2 lub y = 2 + 2 = 4
Mamy: A = ( -4; -2) , B = ( 2; 4)
I AB I^2 = ( 2 - (-4))^2 + ( 4 - (-2))^2 = 6^2 + 6^2 = 36 + 36 = 36*2
więc
I AB I = 6 p(2)
=============
c)
x^2 + y^2 = 20
y = - x - 6
----------------------
x^2 + ( - x - 6)^2 = 20
x^2 + x^2 + 12 x + 36 = 20
2 x^2 + 12 x + 16 = 0 / : 2
x^2 + 6 x + 8 = 0
---------------------
delta = 6^2 - 4*1*8 = 36 - 32 = 4
p(delty) = 2
x = [ -6 - 2]/2 = -8/2 = - 4
lub
x = [ - 6 + 2]/2 = -4/2 = - 2
zatem
y = -( -4) - 6 = 4 - 6 = - 2
lub
y = - ( -2) - 6 = 2 - 6 = - 4
A = ( -4; -2) , B = (-2; - 4)
więc
I AB I^2 = ( - 2 - (-4))^2 + ( -4 - (-2))^2 = 2^2 + (-2)^2 = 4 + 4 = 4*2
czyli
I AB I = 2 p(2)
=======================
p(2) - pierwiastek kwadratowy z 2
p(5) - pierwiastek kwadratowy z 5