Prawdopodobieństwo - 3 liceum 1) Rzucamy kostką cztery razy. Jakie jest prawdopodobieństwo zdarzenia A, że choć raz wypadnie trójka? Podobno to trzeba rozwiązać tak:
Tutaj już nie rozumiem. Później to jeszcze gorzej.
I nagle wychodzi bezsensowny wynik P(A)= Skąd to się w ogóle wzięło? Dodam, że nigdy nie rozumiałam prawdopodobieństwa, dlatego nie znam żadnej definicji z tego działu, ani nic podobnego.
n- oznacza ilość wykonywanych powtórzeń (u nas rzutów -Rzucamy kostką cztery razy), s - sukces (choć raz wypadnie trójka oznacza 1 lub 2 lub 3 lub 4) p - oznacza prawdopodobieństwo sukcesu (u nas ) q - oznacza prawdopodobieństwo porażki "zdarzenie przeciwne" ( )
Rozwiązanie:
W sumie otrzymujemy:
Lub (szybciej) przez zdarzenie przeciwne gdzie trójka nie wypadnie ani razu:
A' - w każdym rzucie wypadła liczba oczek różna od trojki - zdarzenie przeciwne do zdarzenia A.
|Ω|=6*6*6*6=1296 liczba wszystkich zdarzeń
|A'|=5*5*5*5=625 liczba zdarzen sprzyjajacych zajsciu zdarzenia A' - w kazdym rzucie wypadnie liczba oczek rózna od 3 na pięć sposobow.
Z klasycznej definicji prawdopodobienstwa mamy:
P(A')=625/1296
Z wlasnosci zdarzenia przeciwnego do zdarzenia A:
P(A)=1-P(A')
P(A)=1-625/1296 = 671/1296
gdzie:
n- oznacza ilość wykonywanych powtórzeń (u nas rzutów -Rzucamy kostką cztery razy),
s - sukces (choć raz wypadnie trójka oznacza 1 lub 2 lub 3 lub 4)
p - oznacza prawdopodobieństwo sukcesu (u nas )
q - oznacza prawdopodobieństwo porażki "zdarzenie przeciwne" ( )
Rozwiązanie:
W sumie otrzymujemy:
Lub (szybciej) przez zdarzenie przeciwne gdzie trójka nie wypadnie ani razu: