Odpowiedź:
a) u(x)-w(x) = () - () = - + 2x - 3 = 2x - 4
u(x)*w(x) = () * () = - 2 + 3 - + 2x - 3 =
=
b) u(x)-w(x) = (2) - ( ) = 2 - = - 3 +3 - 1
u(x)*w(x) = (2) * ( ) =
Szczegółowe wyjaśnienie:
2.
a) u(x) = x² - 1, w(x) = x² - 2x + 3
u(x) - w(x) = x² - 1 - (x² - 2x + 3) = x² - 1 - x² + 2x - 3 = 2x - 4
u(x)•w(x) =
(x² - 1)•(x² - 2x + 3) = x⁴ - x² - 2x³ + 2x + 3x² - 3 = x⁴ - 2x³ + 2x² + 2x - 3
b) u(x) = 2x² - 1, w(x) = 3x³ - x²
u(x) - w(x) = 2x² - 1 - 3x³ + x² = - 3x³ + 3x² - 1
u(x)•w(x) = (2x² - 1)(3x³ - x²) = 6x⁵ - 3x³ - 2x⁴ + x²
u(x)•w(x) = (2x² - 1)•(3x³ - x²) = 6x⁵ - 3x³ - 2x⁴ + x²
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a) u(x)-w(x) = () - () = - + 2x - 3 = 2x - 4
u(x)*w(x) = () * () = - 2 + 3 - + 2x - 3 =
=
b) u(x)-w(x) = (2) - ( ) = 2 - = - 3 +3 - 1
u(x)*w(x) = (2) * ( ) =
Szczegółowe wyjaśnienie:
Odpowiedź:
2.
a) u(x) = x² - 1, w(x) = x² - 2x + 3
u(x) - w(x) = x² - 1 - (x² - 2x + 3) = x² - 1 - x² + 2x - 3 = 2x - 4
u(x)•w(x) =
(x² - 1)•(x² - 2x + 3) = x⁴ - x² - 2x³ + 2x + 3x² - 3 = x⁴ - 2x³ + 2x² + 2x - 3
b) u(x) = 2x² - 1, w(x) = 3x³ - x²
u(x) - w(x) = 2x² - 1 - 3x³ + x² = - 3x³ + 3x² - 1
u(x)•w(x) = (2x² - 1)(3x³ - x²) = 6x⁵ - 3x³ - 2x⁴ + x²
Szczegółowe wyjaśnienie:
2.
a) u(x) = x² - 1, w(x) = x² - 2x + 3
u(x) - w(x) = x² - 1 - (x² - 2x + 3) = x² - 1 - x² + 2x - 3 = 2x - 4
u(x)•w(x) =
(x² - 1)•(x² - 2x + 3) = x⁴ - x² - 2x³ + 2x + 3x² - 3 = x⁴ - 2x³ + 2x² + 2x - 3
b) u(x) = 2x² - 1, w(x) = 3x³ - x²
u(x) - w(x) = 2x² - 1 - 3x³ + x² = - 3x³ + 3x² - 1
u(x)•w(x) = (2x² - 1)•(3x³ - x²) = 6x⁵ - 3x³ - 2x⁴ + x²