" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
2) Ze wzoru na pole obliczamy wysokość
1/2 (a+b)*h=96 | *2
(a+b)*h=192
24*h=192
h=8
3) Dłuzsza podstawę dzielimy na 3 odcinki jeden dlugosci krótkiej podstawy 15-9 = 6
i jak to 6:2=3
Powstaje nam trojkąt prostokątny utworzony z wysokosci, ramienia oraz odcinka dlugości 3 cm na dluzszej podstawie.
4) Z pitagorasa liczymy długość ramienia (oznacze litera x)
8²+3²=x²
64+9=x²
x²=73
x=√73
5) Liczymy obwód
L= 2*√73 +15+9
L=2√73+24 cm
P=96cm2
96=1/2(a+b)h |*2
192=(a+b)h
5x=15cm-dłuższa podstawa ==> x= 3cm
3x= 3*3=9cm - krótsza podstawa
192=(9+15)h
192= 24h |;24
h=8[cm]
różnica między długościami podstaw wynosi:
15-9=6cm
więc aby obliczyc odległość wysokości od kąta trapezu przy podstawie: 6cm:2=3cm ponieważ jest to trapez równoramienny)
Z tw. Pitagorasa obliczamy przeciwprostokątną mając podane dwie przyprostokątne trójkąta:
3 do kwadratu+ 8do kwadratu= c do kwadratu
9+64=c do kwadratu
c= pierwiastek z 73