maaf ga punya aplikasi untuk membuat grafik,yg jls terbuka ke bawah krn a bernilai negatif. tp setelah dikalikan negatif maka kurva terbuka keatas kr a positif a. pembuat nol. saat y = 0,maka (x + 5)(x - 1) = 0 x + 5 = 0 => x = -5 (-5,0) atau x - 1 = 0 => x = 1 (1,0) saat x = 0 maka y = 0^2+4.0-5= -5 (0,-5) b. pers sb simetri x = -b/2a a = 1,b= 4,c = -5 x = -4/2.1 x = -4/2 = -2 c. nilai minimum. titik puncak minimum y = - D /4a D = b^2 - 4.a.c = 4^2 - 4.1.(-5) = 16 + 20 = 36 y = - 36/ 4 = -9 => nilai minimum ttk punck = (-2,-9) d. f(x) jk x = 0 y = x^2+4x - 5 y = 0 + 0 - 5 = -5
maaf ga punya aplikasi untuk membuat grafik,yg jls terbuka ke bawah krn a bernilai negatif. tp setelah dikalikan negatif maka kurva terbuka keatas kr a positif
a. pembuat nol.
saat y = 0,maka (x + 5)(x - 1) = 0
x + 5 = 0 => x = -5 (-5,0) atau x - 1 = 0 => x = 1 (1,0)
saat x = 0 maka y = 0^2+4.0-5= -5 (0,-5)
b. pers sb simetri
x = -b/2a
a = 1,b= 4,c = -5
x = -4/2.1
x = -4/2 = -2
c. nilai minimum.
titik puncak minimum
y = - D /4a
D = b^2 - 4.a.c
= 4^2 - 4.1.(-5)
= 16 + 20
= 36
y = - 36/ 4
= -9 => nilai minimum
ttk punck = (-2,-9)
d. f(x) jk x = 0
y = x^2+4x - 5
y = 0 + 0 - 5 = -5
a) pembuat nol fungsi
→ - x² - 4x + 5 = 0
( - x + 5)(x + 1) = 0
-x = -5
x = 5
x + 1 = 0
x = -1
hp = { (-1, 0) , (5, 0) }
b) sumbu simetri
→ x = -b/2a
x = -(-4)/2(-1)
x = 4/-2
x = -2
c) nilai minimum fungsi,
y = (b² -4ac)/-4a
y = (-4² - 4(-1)(5)/-4(-1)
y = (16+20)/4
y = 36/4
y = 9
nilai minimum = { -2 , 9 }
d) f(0) = -(0)² - 4(0) + 5
f(0) = 0 - 0 + 5
f(0) = 5
( 0, 5 )