December 2018 1 49 Report
Pochodne
Czy taka metoda myślowa jest dobra ? Oraz czy dobrze wszystko jest zrobione ?
y=[ln(x+\sqrt{1+x^2})]\\  y'=[ln(\underbrace{x+\sqrt{1+x^2}}_{x})]'=(lnx)'+ (x)'^*= \frac{1}{x+ \sqrt{1+x^2}}+\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}}=?\\\\\\  ^*= (x)'=x+ \sqrt{1+x^2}=x'+( \sqrt{\underbrace{1+x^2}_{y}})'=x'+[ \sqrt{x}'*y']=\\  1+ [\frac{1}{2 \sqrt{y} }*2x]=1+[ \frac{1}{2 \sqrt{1+x^2}}*2x]=1+ \frac{x}{ \sqrt{1+x^2}}= \frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}}

Recommend Questions



Life Enjoy

" Life is not a problem to be solved but a reality to be experienced! "

Get in touch

Social

© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.