Odpowiedź:
F, P
Szczegółowe wyjaśnienie:
Stan początkowy w pudełku: x - liczba kul czerwonych
2x - liczba kul czarnych (razem 3x)
Stąd P(czerwona) = x/ 3x = 1/3
Stan po dołożeniu 2 kul czeronych:
liczba kul czerwonych = x + 2
liczba kul czarnych = 2x
razem liczba kul = x + 2 + 2x = 3x + 2
P(czerwona) = (x+2)/ (3x+2) = 5/11
Stąd , z proporcji obliczamy x:
11(x + 2) = 5 (3x + 2)
11x + 22 = 15x + 10
11x - 15x = 10 - 22
- 4x = - 12 /:(-4)
x = 3 (liczba kul czerwonych na początku)
2x = 6 (liczba kul czarnych na początku)
Czyli w pudełku są 3 kule czerwone i 6 kul czarnych.
Odp. F , P.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
F, P
Szczegółowe wyjaśnienie:
Stan początkowy w pudełku: x - liczba kul czerwonych
2x - liczba kul czarnych (razem 3x)
Stąd P(czerwona) = x/ 3x = 1/3
Stan po dołożeniu 2 kul czeronych:
liczba kul czerwonych = x + 2
liczba kul czarnych = 2x
razem liczba kul = x + 2 + 2x = 3x + 2
P(czerwona) = (x+2)/ (3x+2) = 5/11
Stąd , z proporcji obliczamy x:
11(x + 2) = 5 (3x + 2)
11x + 22 = 15x + 10
11x - 15x = 10 - 22
- 4x = - 12 /:(-4)
x = 3 (liczba kul czerwonych na początku)
2x = 6 (liczba kul czarnych na początku)
Czyli w pudełku są 3 kule czerwone i 6 kul czarnych.
Odp. F , P.