Pierwiastkami wielomianu W(x)=x^3+ax^2+bx-48 są liczby -3 i 4. Rozłóż ten wielomian na czynniki możliwie najniższego stopnia.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
W(x) = x^3 + a x^2 + b x - 48
oraz
W(-3) = 0 i W(4) = 0
czyli
(-3)^3 + a*(-3)^2 - 3 b - 48 = 0
4^3 + a*4^2 + 4 b - 48 = 0
---------
- 27 + 9 a - 3 b - 48 = 0
64 + 16 a + 4 b - 48 = 0
-------------
9a - 3 b = 75 / : 3
16 a + 4 b = - 16
----------------------
3 a - b = 25 => b = 3 a - 25
16 a + 4*( 3 a - 25) = - 16
16 a + 12 a - 100 = - 16
28 a = 84
a = 3
====
b = 3*3 - 25 = 9 - 25 = - 16
======================
więc
W(x) = x^3 + 3 x^2 - 16 x - 48 = x^2 *( x + 3) - 16*( x + 3) = ( x + 3)*(x^2 - 16) =
= ( x + 3)*( x - 4)*(x + 4)
=======================