Pada gambar berikut ini titik O merupakan pusat lingkaran. Besar <AOE = 112° dan <BOD = 48°.
Besar <BCD = .....
Lingkaran adalah himpunan titik-titik dibidang datar yang berjarak sama dari suatu titik tetap di bidang tersebut
Titik Pusat adalah titik yang berada di tengah-tengah lingkaran. Jarak titik tersebut dengan titik manapun pada lingkaran selalu tetap
Tali busur adalah garis yang menghubungkan dua titik pada lingkaran
Sudut pusat adalah sudut terkecil yang dibentuk oleh pusat lingkaran dan dua titik yang terletak pada busur lingkaran
Sudut keliling adalah sudut yang dibentuk oleh tiga titik yang terletak pada busur lingkaran
Rumus :
Sudut pusat = 2 x sudut keliling
Diketahui :
∠AOE = 112°
∠BOD = 48°
Ditanya :
∠BCD = ?
Dijawab :
∠AOE dan ∠BOD merupakan sudut pusat
∠BCD merupakan sudut keliling
Karena perpotongan kedua busur terjadi di luar lingkaran maka kedua sudut pusat kita cari selisihnya
∠BCD = x (∠AOE - ∠BOD)
∠BCD = x (112° - 48°)
∠BCD = x 64°
∠BCD = 32°
1. Soal serupa → brainly.co.id/tugas/10780977
2. Soal tentang sudut pusat dan sudut keliling → brainly.co.id/tugas/21349589
=======================
Kelas : VIII
Mapel : Matematika
Bab : Bab 7 - Lingkaran
Kode : 8.2.7
Kata Kunci : sudut BCD, sudut pusat, sudut keliling, busur
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Pada gambar berikut ini titik O merupakan pusat lingkaran. Besar <AOE = 112° dan <BOD = 48°.
Besar <BCD = .....
Lingkaran adalah himpunan titik-titik dibidang datar yang berjarak sama dari suatu titik tetap di bidang tersebut
Titik Pusat adalah titik yang berada di tengah-tengah lingkaran. Jarak titik tersebut dengan titik manapun pada lingkaran selalu tetap
Tali busur adalah garis yang menghubungkan dua titik pada lingkaran
Sudut pusat adalah sudut terkecil yang dibentuk oleh pusat lingkaran dan dua titik yang terletak pada busur lingkaran
Sudut keliling adalah sudut yang dibentuk oleh tiga titik yang terletak pada busur lingkaran
Rumus :
Sudut pusat = 2 x sudut keliling
Pembahasan :
Diketahui :
∠AOE = 112°
∠BOD = 48°
Ditanya :
∠BCD = ?
Dijawab :
∠AOE dan ∠BOD merupakan sudut pusat
∠BCD merupakan sudut keliling
Karena perpotongan kedua busur terjadi di luar lingkaran maka kedua sudut pusat kita cari selisihnya
∠BCD = x (∠AOE - ∠BOD)
∠BCD = x (112° - 48°)
∠BCD = x 64°
∠BCD = 32°
Pelajari lebih lanjut :
1. Soal serupa → brainly.co.id/tugas/10780977
2. Soal tentang sudut pusat dan sudut keliling → brainly.co.id/tugas/21349589
=======================
Detail Jawaban :
Kelas : VIII
Mapel : Matematika
Bab : Bab 7 - Lingkaran
Kode : 8.2.7
Kata Kunci : sudut BCD, sudut pusat, sudut keliling, busur