Urodził się 20 marca 1892 roku w Krakowie i tam też spędził swe dzieciństwo, o którym mamy jedynie skąpe wiadomości. Banach to nazwisko jego matki Katarzyny, góralki. Matka i ojciec nie interesowali się nim, matki swej nie znał zupełnie. Gdy podrósł, udzielał korepetycji. Gimnazjum ukończył w 1910 roku w Krakowie. Nauczyciel matematyki widział w nim utalentowanego matematyka.Już wtedy w latach szkolnych czytał podręczniki z funkcji rzeczywistych w języku francuskim (w gimnazjum klasycznym uczono go tylko greki i łaciny; podobno, zdaniem samego Banacha, to właśnie precyzja i doskonałość gramatyki łacińskiej uczyniły z niego matematyka). Niesystematycznie i w ciągu krótkiego czasu słuchał wykładów matematyka Stanisława Zaremby na Uniwersytecie Jagiellońskim. Następnie wyjechał do Lwowa, gdzie studiował na Politechnice Lwowskiej. Jednak żadnej z tych uczelni nie ukończył. Po wybuchu pierwszej wojny światowej wrócił do Krakowa. Praca akademicka Banacha datuje się od roku 1920. Objął wtedy stanowisko asystenta na Politechnice Lwowskiej u profesora matematyki Antonigo Łomnickiego. Od tej pory rozpoczyna się jego świetna kariera naukowa. W tym samym 1920 roku przedstawie na Uniwersytecie Lwowskim pracę pt. "Sur les operations dans les ensembles abstraits et leur application aux equations integrales" ("O operacjach na zbiorach abstrakcyjnych i ich zastosowaniach do równań całkowych"). Miała ona pierwszorzędne znaczenie dla analizy funkcjonalnej. Widocznie musiano ją wówczas wysoko ocenić, skoro nadano mu stopień doktora, mimo że nie miał ukończonych studiów wyższych. W roku 1922 habilituje się i prawie bezpośrednio (1924) zostaje mianowany profesorem nadzwyczajnym. Jest współzałożycielem czasopisma "Studia Mathematica" (1929), oraz inicjatorem "Monografii Matemtycznych" (1932), tj. serii dzieł poświęconych poszczególnym działom matematyki. W latach trzydziestych był namawiany przez von Neumanna (z inicjatywy R. Wienera) na emigrację do Stanów Zjednoczonych. Nie dał się jednak skusić perspektywą luksusowych warunków i pozostał w kraju. Tu również doceniono jego osiągnięcia: w roku 1930 ortzymuje Nagrodę Naukową Lwowa, a w 1933 rok uzyskuje wielką nagrodę Polskiej Akademii Umiejętności. W tym samym roku zostaje wybrany prezesem Polskiego Towarzystwwa Matematycznego (w latach 1932-35 był wiceprezesem). Działalność Banacha jako prezesa PTM przerywa wybuch wojny. Nie przerywa jednak jego pracy naukowej, bo, jak wiadomo, Lwów zajęły wojska radzieckie i przez prawie dwa lata (do napaści Hitlera na Związek Radziecki) matematycy lwowscy mieli możność współpracy z matematykami radzieckimi. Banach zostaje profesorem radzieckiego Lwowskiego Uniwersytetu Państwowego, dziekanem Wydziału Matematyczno-Przyrodniczego tego uniwersytetu oraz członkiem korespondentem Akademii Ukraińskiej SRR. Był również członkiem redakcji czasopisma "Matiematiczeskij Sbornik". Odtąd datuje się jego aktywny udział w życiu społeczno-politycznym, zostaje członkiem Lwowskiej Rady Miejskiej, a po wojnie członkiem prezydium Wszechsłowiańskiego Antyfaszystowskiego Komitetu. Po napaści w czerwcu 1941 roku Hitlera na Związek Radziecki przyszło Banachowi przeżyć okropności okupacji. Opieka ze strony uczonych radzieckich oraz polskich pozwoliła Banachowi przetrwać okupacj. Niestety, zaraz po wyzwoleniu, 31 sierpnia 1945 roku, umiera na raka oskrzeli. Pochowany jest na cmentarzu we Lwowie. Miał objąć katedrę na Uniwersytecie Jagiellońskim. Wyrazem uznania dla Banacha ze strony matematyków polskich jest nagroda jego imienia przyznawana co roku przez Polskie Towarzystwo Matematyczne polskiemu matematykowi. Jego imię nowi również powstałe w 1972 roku Międzynarodowe Centrum Matematyczne przy Instytucie Matematycznym Polskiej Akademii Nauk w Warszawie. Ten samouk wszedł do historii matematyki jako główny współtwóca analizy funkcjonalnej, zwanej także teorią operacji (zajmował się również i innymi działami matematyki). Podstawowe pojęcie tej dyscypliny matematycznej stanowi "przestrzeń Banacha", a do podstawowych opracowań w tej dziedzinie należy główne dzieło banacha - "Operacje liniowe", wydane najpierw w języku polskim (w 1931 roku), następnie w wielu tłumaczeniach, m.in. we francuskim, ukraińskim.
Urodził się 20 marca 1892 roku w Krakowie i tam też spędził swe dzieciństwo, o którym mamy jedynie skąpe wiadomości. Banach to nazwisko jego matki Katarzyny, góralki. Matka i ojciec nie interesowali się nim, matki swej nie znał zupełnie. Gdy podrósł, udzielał korepetycji. Gimnazjum ukończył w 1910 roku w Krakowie. Nauczyciel matematyki widział w nim utalentowanego matematyka.Już wtedy w latach szkolnych czytał podręczniki z funkcji rzeczywistych w języku francuskim (w gimnazjum klasycznym uczono go tylko greki i łaciny; podobno, zdaniem samego Banacha, to właśnie precyzja i doskonałość gramatyki łacińskiej uczyniły z niego matematyka). Niesystematycznie i w ciągu krótkiego czasu słuchał wykładów matematyka Stanisława Zaremby na Uniwersytecie Jagiellońskim. Następnie wyjechał do Lwowa, gdzie studiował na Politechnice Lwowskiej. Jednak żadnej z tych uczelni nie ukończył. Po wybuchu pierwszej wojny światowej wrócił do Krakowa. Praca akademicka Banacha datuje się od roku 1920. Objął wtedy stanowisko asystenta na Politechnice Lwowskiej u profesora matematyki Antonigo Łomnickiego. Od tej pory rozpoczyna się jego świetna kariera naukowa. W tym samym 1920 roku przedstawie na Uniwersytecie Lwowskim pracę pt. "Sur les operations dans les ensembles abstraits et leur application aux equations integrales" ("O operacjach na zbiorach abstrakcyjnych i ich zastosowaniach do równań całkowych"). Miała ona pierwszorzędne znaczenie dla analizy funkcjonalnej. Widocznie musiano ją wówczas wysoko ocenić, skoro nadano mu stopień doktora, mimo że nie miał ukończonych studiów wyższych. W roku 1922 habilituje się i prawie bezpośrednio (1924) zostaje mianowany profesorem nadzwyczajnym. Jest współzałożycielem czasopisma "Studia Mathematica" (1929), oraz inicjatorem "Monografii Matemtycznych" (1932), tj. serii dzieł poświęconych poszczególnym działom matematyki. W latach trzydziestych był namawiany przez von Neumanna (z inicjatywy R. Wienera) na emigrację do Stanów Zjednoczonych. Nie dał się jednak skusić perspektywą luksusowych warunków i pozostał w kraju. Tu również doceniono jego osiągnięcia: w roku 1930 ortzymuje Nagrodę Naukową Lwowa, a w 1933 rok uzyskuje wielką nagrodę Polskiej Akademii Umiejętności. W tym samym roku zostaje wybrany prezesem Polskiego Towarzystwwa Matematycznego (w latach 1932-35 był wiceprezesem). Działalność Banacha jako prezesa PTM przerywa wybuch wojny. Nie przerywa jednak jego pracy naukowej, bo, jak wiadomo, Lwów zajęły wojska radzieckie i przez prawie dwa lata (do napaści Hitlera na Związek Radziecki) matematycy lwowscy mieli możność współpracy z matematykami radzieckimi. Banach zostaje profesorem radzieckiego Lwowskiego Uniwersytetu Państwowego, dziekanem Wydziału Matematyczno-Przyrodniczego tego uniwersytetu oraz członkiem korespondentem Akademii Ukraińskiej SRR. Był również członkiem redakcji czasopisma "Matiematiczeskij Sbornik". Odtąd datuje się jego aktywny udział w życiu społeczno-politycznym, zostaje członkiem Lwowskiej Rady Miejskiej, a po wojnie członkiem prezydium Wszechsłowiańskiego Antyfaszystowskiego Komitetu. Po napaści w czerwcu 1941 roku Hitlera na Związek Radziecki przyszło Banachowi przeżyć okropności okupacji. Opieka ze strony uczonych radzieckich oraz polskich pozwoliła Banachowi przetrwać okupacj. Niestety, zaraz po wyzwoleniu, 31 sierpnia 1945 roku, umiera na raka oskrzeli. Pochowany jest na cmentarzu we Lwowie. Miał objąć katedrę na Uniwersytecie Jagiellońskim. Wyrazem uznania dla Banacha ze strony matematyków polskich jest nagroda jego imienia przyznawana co roku przez Polskie Towarzystwo Matematyczne polskiemu matematykowi. Jego imię nowi również powstałe w 1972 roku Międzynarodowe Centrum Matematyczne przy Instytucie Matematycznym Polskiej Akademii Nauk w Warszawie. Ten samouk wszedł do historii matematyki jako główny współtwóca analizy funkcjonalnej, zwanej także teorią operacji (zajmował się również i innymi działami matematyki). Podstawowe pojęcie tej dyscypliny matematycznej stanowi "przestrzeń Banacha", a do podstawowych opracowań w tej dziedzinie należy główne dzieło banacha - "Operacje liniowe", wydane najpierw w języku polskim (w 1931 roku), następnie w wielu tłumaczeniach, m.in. we francuskim, ukraińskim.
Wacław Sierpiński urodził soę 14.06.1882 r. w Warszawie.Tu skończył szkołę
średnią i tu odbył studia matematyczne zakończone złotym medalem.
W rok później ( 1905) uzyskał stopień doktora.
Na początku zajmował się teorią liczb.W 1910 i 1914 ukazały się jego
książki: "Teoria liczb niewymiernych" i "Teoria liczb."
W 1912 wydał książkę " Zarys teorii mnogości".
W 1908 roku habilituje się z teorii mnogości i w 1909 rozpoczyna wyklady
z tej dziedziny na Uniwwrsytecie Lwowskim.
W 1910 zosatje profesorem nadzwyczajnym tego uniwwersytetu.
W czasie I wojny światowej internowany w Wiatce , a następnie w Moskwie.
W 1918 wraca do Lwowa, a następnie obejmuje wykłady na Uniwersytecie
Warszawskim. Tam nawiązuje współpracę z wybitnymi matematykami
Janiszewskim i Mazurkiewiczem i wspólnie z nimi zakłada " Fundamenta
Mathematicae"( 1920).
Janiszewki ginie podczas wojny z bolszewikami w 1920 r.
" Fundamenta .. " wydaje razem z Mazurkiewiczem do 1945 oraz
Kuratowskim do 1960 r.
Sierpiński na UW pracuje do 1960 r ( do emerytury ).
jego dorobek naukowy liczy ponad 700 prac naukowych,15 książek naukowych
i 13 popularnonaukowych.Ostatnia jego książka ukazała się w 1964 r. gdy
już miał 82 lata ( "Elementary theory of nambers " ).
Zmarł w wieku 87 lat.
Znakomite wyniki Sierpińskiego w teorii liczb,teorii mnogości i teorii
funkcji rzeczywistych ( i w innych dziedzinach) przyniosły mu
swiatową sławę.
Był doktorem honoris causa uniwersytetów we Lwowie,Amsterdamie,
Tartu,Sofii,Paryżu,Bordeaux,Pradze,Wroclawiu,Lucknow,Moskwie
oraz człokiem honorowym kilkunastu Akademii Nauk lub Towarzystw
Matematycznych ( w tym Papieskiej Akademii Nauk ).