Obliczyć pole trójkąta EMN gdy czworokat ABCD jest prostokatem: |AB|=60cm |BC|= 30cm i trojkat ABE jest rónoboczny
P(ABE) = |AB|² * √3 / 4 = 900√3 cm²
P(ABE) = |AB| * h / 2
900√3 cm² = |AB| * h / 2
h = 900√3 cm² * 2 / |AB|
h = 30√3cm
h - |BC| = (|MN|*√3) / 2
(30√3 - 30)cm = (|MN|*√3) / 2
|MN|*√3 = 60(√3 - 1)cm
|MN| = (60 - 20√3)cm
P(EMN) = h * |MN| / 2
P(EMN) = 30√3cm * (60 - 20√3)cm / 2 = (900√3 - 900)cm² = 900(√3 - 1)cm²
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
P(ABE) = |AB|² * √3 / 4 = 900√3 cm²
P(ABE) = |AB| * h / 2
900√3 cm² = |AB| * h / 2
h = 900√3 cm² * 2 / |AB|
h = 30√3cm
h - |BC| = (|MN|*√3) / 2
(30√3 - 30)cm = (|MN|*√3) / 2
|MN|*√3 = 60(√3 - 1)cm
|MN| = (60 - 20√3)cm
P(EMN) = h * |MN| / 2
P(EMN) = 30√3cm * (60 - 20√3)cm / 2 = (900√3 - 900)cm² = 900(√3 - 1)cm²