Oblicz.
1.
a) log₂ 0,125
b) log₄ 2
c) log₄ 8
d) log₄ \frac{1}{1024}
e) log₄ \frac{1}{\sqrt{5}}
f) log\sqrt{2} 4
g) log\sqrt{2} 32
h) log₃ 3
2.
a) log₀,₂ 125
b) log⅙ \frac{1}{216}
c) log⅓ √3
d) log½ 2√2
3.
a) log 100+log₄ \frac{1}{16}
b) log 10⁷-log₀,₅ 8
c) log \sqrt[4]{10} - log₃ \sqrt[4]{3}
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Definicja logarytmu:
========================
zad 1
a) log₂ 0,125=c <=> 2^c=0,125
2^c=0,125
2^c=1/8
2^c=8⁻¹
2^c=2⁻³
c=-3
---
b) log₄ 2=c <=> 4^c=2
4^c=2
2^{2c}=2
2c=2
c=1/2
---
c) log₄ 8=c <=> 4^c=8
4^c=8
2^{2c}=2³
2c=3
c=3/2
---
d) log₄ 1/1024 = c <=> 4^c=1024
4^c=1024
2^{2c}=2^10
2c=10
c=5
---
e) log₄ 1/√2 = c <=> 4^c=1/√2
4^c=1/√2
2^{2c}=√2⁻1
2^{2c}=2⁻²
2c=-2
c=-1
---
f) log\sqrt{2} 4=c <=> √2^c=4
√2^c=4
2^{2c}=2²
2c=2
c=1
---
g) log\sqrt{2} 32=c <=> √2^c=32
√2^c=32
2^{2c}=2⁵
2c=5
c=5/2
---
h) log₃ 3=c <=> 3^c=3
3^c=3¹
c=1
=======================
zad 2
a) log₀,₂ 125=c <=> (1/5)^c=125
(1/5)^c=125
5^{-c}=5³
c=-3
---
b) log⅙ 1/216 =c <=> (1/6)^c=1/216
(1/6)^c=1/216
(1/6)^c=(1/6)³
c=3
---
c) log⅓ √3 =c <=> (1/3)^c=√3
(1/3)^c=√3
3^{-c}=3²
c=-2
---
d) log½ 2√2 =c <=> (1/2)^c=2√2
(1/2)^c=2√2
2^{-c}=2¹*2^{1/2}
2^{-c}=2^{3/2}
c=-3/2
=======================
zad 3
a) log 100+log₄ 1/16=2+(-2)=0
log 100=c <=> 10^c=100
10^c=100
10^c=10²
c=2
log₄ 1/16 =c <=> 4^c=1/16
4^c=1/16
4^c=4^{-2}
c=-2
---
b) log 10⁷-log₀,₅ 8=7-(-3)=10
log 10⁷=c <=> 10^c=10⁷
10^c=10⁷
c=7
log₀,₅ 8=c <=> (1/2)^c=8
(1/2)^c=8
2^{-c}=2³
c=-3
---
c) log ⁴√10 - log₃ ⁴√3=1/4 - 1/4 =0
log ⁴√10=c <=> 10^c=⁴√10
10^c=⁴√10
10^c=10^{1/4}
c=1/4
log₃ ⁴√3=c <=> 3^c=⁴√3
3^c=⁴√3
3^c=3^{1/4}
c=1/4