Oblicz wartość wyrażenia.
wiedząc, że
sin^3 x + cos^3 x = (sin x + cos x )( sin^2 x - sin x * cos x + cos^2 x )
(sin x + cos x )^2 = sin^2 x + cos^2 x + 2*sin x * cos x =( 3/5)^2
9/25 = 1 + 2*sin x * cos x (bo sin^2 x + cos^2 x = 1 )
-16/25 = 2*sin x * cos x => sin x*cos x = -16/50
sin^3x + cos^x = (3/5)(1 - - 16/50) = 3/5 * 66/50 =99/125
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
sin^3 x + cos^3 x = (sin x + cos x )( sin^2 x - sin x * cos x + cos^2 x )
(sin x + cos x )^2 = sin^2 x + cos^2 x + 2*sin x * cos x =( 3/5)^2
9/25 = 1 + 2*sin x * cos x (bo sin^2 x + cos^2 x = 1 )
-16/25 = 2*sin x * cos x => sin x*cos x = -16/50
sin^3x + cos^x = (3/5)(1 - - 16/50) = 3/5 * 66/50 =99/125