Oblicz pole powierzchni całkowitej graniastosłupa prawidłowego czworokątnego, którego pole podstawy jest równe 81cm², a kąt między przekątną ściany bocznej i krawędzią podstawy ma miarę 60stopni.
BARDZO PILNE NA DZISIAJ!!!!
anita1318
W podstawie ma kwadrat czyli,aby obliczyc bok wyciagamy pierwiastek z pola i otrzymujemy 9 czyli a
wlasnosc trojkata prostokatnego mowi ze druga rzyprostokatna w trojkacie o takich katach wynosi 2a czyli 2x9=18
sawik92sawik
Pp=81cm² Krawędź podstawy=√81=9cm wysokość tego graniastosłupa (czyli długość ściany bocznej): cos 60 stopni = 1/2 (jedna druga) teraz dzięki metodzie proporcji obliczamy wysokość: 9/x=1/2 (gdzie "/" zastępuje nam kreskę ułamkową) i tak wychodzi: x=9*2=18 cm Wysokość graniastosłupa a zarazem długości ściany bocznej równa się 18 cm Teraz obliczamy pole powierzchni wszystkich ścian bocznych: Ppś=4*9cm*18cm= 648 cm²
Teraz dodajemy Ppś oraz Pp pamiętając, że w graniastosłupie mamy dwie podstawy: PP=Ppś+2Pp PP= 648cm²+2*81cm²=648cm²+162cm²=810 cm²
Mam nadzieję że rozkminiłem ci zadanie co jak po kolei zrobić ;)
wlasnosc trojkata prostokatnego mowi ze druga rzyprostokatna w trojkacie o takich katach wynosi 2a czyli 2x9=18
Pp=81cm2
Pb=18x9x4(bo sa 4 sciany)=648cm2
Pc=2Pp+Pb=2x81cm2+648cm2=810cm2
a=9
tg60=h/8
pierwiastek z 3=h/8
8√3=h
pc=2pp*4pb
pc=2*81+4*8*8√3
Krawędź podstawy=√81=9cm
wysokość tego graniastosłupa (czyli długość ściany bocznej):
cos 60 stopni = 1/2 (jedna druga)
teraz dzięki metodzie proporcji obliczamy wysokość:
9/x=1/2 (gdzie "/" zastępuje nam kreskę ułamkową)
i tak wychodzi:
x=9*2=18 cm
Wysokość graniastosłupa a zarazem długości ściany bocznej równa się 18 cm
Teraz obliczamy pole powierzchni wszystkich ścian bocznych:
Ppś=4*9cm*18cm= 648 cm²
Teraz dodajemy Ppś oraz Pp pamiętając, że w graniastosłupie mamy dwie podstawy:
PP=Ppś+2Pp
PP= 648cm²+2*81cm²=648cm²+162cm²=810 cm²
Mam nadzieję że rozkminiłem ci zadanie co jak po kolei zrobić ;)