oblicz pole i obwód trapezu równoramiennego którego podstawy wynoszą 10cm i 18cm a kąt ostry miedzy nimi ma miare 60.
a = 18 cm
b = 10 cm
alfa = 60 st
Mamy
a = x + b + x
2x = a - b
x = ( a - b) /2 = ( 18 - 10 ) cm /2 = 4 cm
h - wysokość trapezu
h/x = tg alfa = tg 60 st = p(3)
h = x *p(3) = 4 p(3)
h = 4 p(3) cm
=============
c -długość ramienia
c^2 = x^2 + h^2 = 4^2 + ( 4 p(3))^2 = 16 + 16*3 = 16*4
c = p( 16*4) = 4*2 = 8
c = 8 cm
Pole trapezu
P = 0,5 *( a + b)*h
P = 0,5 *( 18 + 10) cm * 4 p(3) cm = 14 cm* 4 p(3) cm = 56 p(3) cm^2
==============================================================
Obwód trapezu
L =a + b + 2 c
L = [ 18 + 10 + 2* 8) cm = ( 28 + 16 ) cm = 44 cm
============================================
p(3) - pierwiastek kwadratowy z 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a = 18 cm
b = 10 cm
alfa = 60 st
Mamy
a = x + b + x
2x = a - b
x = ( a - b) /2 = ( 18 - 10 ) cm /2 = 4 cm
h - wysokość trapezu
Mamy
h/x = tg alfa = tg 60 st = p(3)
h = x *p(3) = 4 p(3)
h = 4 p(3) cm
=============
c -długość ramienia
Mamy
c^2 = x^2 + h^2 = 4^2 + ( 4 p(3))^2 = 16 + 16*3 = 16*4
c = p( 16*4) = 4*2 = 8
c = 8 cm
=============
Pole trapezu
P = 0,5 *( a + b)*h
P = 0,5 *( 18 + 10) cm * 4 p(3) cm = 14 cm* 4 p(3) cm = 56 p(3) cm^2
==============================================================
Obwód trapezu
L =a + b + 2 c
L = [ 18 + 10 + 2* 8) cm = ( 28 + 16 ) cm = 44 cm
============================================
p(3) - pierwiastek kwadratowy z 3