oblicz pochodną f(x)=(x^2 * sinx)^2
f(x) = ( x^2 * sin x )^2
czyli f(x) = ( x^2 *sin x) *( x^2 * sin x)
Stosujemy wzór na pochodną iloczynu funkcji
f'(x) = [ x^2 *sin x ]' [x^2 *sin x] + [ x^2*sin x]*[x^2 *sin x}'
Obliczmy
[ x^2 *sin x]' = 2x*sin x + x^2 * cos x
zatem
f'(x) = [ 2x *sin x + x^2*cos x]*[x^2 *sin x] +
+ [x^2 *sin x]*[2x *sin x + x^2 *cos x] =
= 2 *[2 x^3 *sin ^2 x + x^4 * sin x *cos x] =
= 2 x^4 *sin x * cos x + 4 x^3 * sin^2 x
======================================
sin^2 x <-- sinus kwadrat x
---------------------------------
II sposób:
f(x) = ( x^2 *sin x)^2 = x^4 * sin^2 x
f' (x) = 4 *x^3 * sin^2 x + x^4 * 2*sin x * cos x =
= 2 *x^4 *sin x *cos x + 4*x^3* sin^2 x
====================================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
f(x) = ( x^2 * sin x )^2
czyli f(x) = ( x^2 *sin x) *( x^2 * sin x)
Stosujemy wzór na pochodną iloczynu funkcji
f'(x) = [ x^2 *sin x ]' [x^2 *sin x] + [ x^2*sin x]*[x^2 *sin x}'
Obliczmy
[ x^2 *sin x]' = 2x*sin x + x^2 * cos x
zatem
f'(x) = [ 2x *sin x + x^2*cos x]*[x^2 *sin x] +
+ [x^2 *sin x]*[2x *sin x + x^2 *cos x] =
= 2 *[2 x^3 *sin ^2 x + x^4 * sin x *cos x] =
= 2 x^4 *sin x * cos x + 4 x^3 * sin^2 x
======================================
sin^2 x <-- sinus kwadrat x
---------------------------------
II sposób:
f(x) = ( x^2 *sin x)^2 = x^4 * sin^2 x
zatem
f' (x) = 4 *x^3 * sin^2 x + x^4 * 2*sin x * cos x =
= 2 *x^4 *sin x *cos x + 4*x^3* sin^2 x
====================================