" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
oznaczenia:
log{a}{b} w pierwszym nawiasie klamrowym podstawa logarytmu, w drugim liczba logarytmowana
p(x) pierwiastek z x
log{5^3}{1} = 0, bo log{x}{1} = 0 bo podniesienie do potegi 0 daje 1
log{p(5)}{125^2} + log{5^3}{1} - log{p(5)}{25^3} =
log{p(5)}{125^2} - log{p(5)}{25^3} =
log{p(5)}{(125^2) / (25^3)} = //bo log{a}{x} - log{a}{y} = log{a}{x/y}
log{p(5)}{(5^3)^2 / (5^2)^3} =
log{p(5)}{ (5^6) / (5^6)} =
log{p(5)}{ 1 } = 0