" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
∬(x² - y²)dxdy
D = { (x,y); x² + y² < 1 ∧ - x ≤ y ≤ 0 }
x = rcost
y = rsint
0 < r < 1
0 < t < ½π
∬(x² - y²)dxdy = ∫∫[(rcost)² - (rsint)²]drdt =
= ∫∫[r²(cos²t - sin²t)]drdt =
= ∫∫[r²(1 - 2sin²t)]drdt =
= ∫r²dr * ∫(1 - 2sin²t)dt =
= 1/3*½π =
= 1/6π
∫r²dr = 1/3r³ = 1/3*(1 - 0) = 1/3
∫(1 - 2sin²t)dt = t - 2∫sin²tdt =
= t - 2( - sint*cost - cost) =
= t + sin2t + cost =
= (½π + sinπ + cosπ) - (0 + sin0 + cos0) =
= ½π - 1 + 1 =
= ½π