Oblicz: 4 i reszta w potedze: log2 3+log16 2
log 2[ 3] + log 16 [ 2 ] = log 2 [3] + (1/4) log 2 [ 2] = log2 [3] + log2 [ 2^(1/4)] =
= log2 [ 3*2^(1/4)]
zatem
4^[ log 2 ( 3* 2^(1/4))] = (2^2)^[ log 2 ( 3*2^(1/4))] =
= 2^[ 2* log 2 ( 3*2^(1/4))] = 2^log 2 [ ( 3* 2^(1/4))^2] =
= [ 3*2^(1/4)]^2 = 3^2 * [ 2^(1/4)]^2 = 9* 2^(1/2) = 9 p(2)
====================================================
p(2) - pierwiastek kwadratowy z 2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
log 2[ 3] + log 16 [ 2 ] = log 2 [3] + (1/4) log 2 [ 2] = log2 [3] + log2 [ 2^(1/4)] =
= log2 [ 3*2^(1/4)]
zatem
4^[ log 2 ( 3* 2^(1/4))] = (2^2)^[ log 2 ( 3*2^(1/4))] =
= 2^[ 2* log 2 ( 3*2^(1/4))] = 2^log 2 [ ( 3* 2^(1/4))^2] =
= [ 3*2^(1/4)]^2 = 3^2 * [ 2^(1/4)]^2 = 9* 2^(1/2) = 9 p(2)
====================================================
p(2) - pierwiastek kwadratowy z 2