Nomor 39 g(x) = -x³ + 1/2 ax² - 1/2 x² - 3x + 8 g'(x) = -3x² + ax - x - 3 = -3x² + (a - 1)x - 3 Fungsi selalu turun untuk f'(x) < 0 -3x² + (a - 1)x - 3 < 0 a = -3 b = a - 1 c = -3 Karena f'(x) negatif, maka D < 0 D < 0 b² - 4ac < 0 (a - 1)² - 4(-3)(-3) < 0 a² - 2a + 1 - 36 < 0 a² - 2a - 35 < 0 (a + 5)(a - 7) < 0 -5 < a < 7 Fungsi selalu turun pada -5 < a < 7
Nomor 40 Titik P → x = 2p y = x² - 1 = (2p)² - 1 = 4p² - 1 Titik P adalah (2p, 4p² - 1)
Titik Q → x = -3p y = x² - 1 = (-3p)² - 1 = 9p² - 1 Titik Q adalah (-3p, 9p² - 1)
Gradien garis PQ m = (y2 - y1) / (x2 - x1) = (9p² - 1 - (4p² - 1)) / (-3p - 2p) = 5p² / -5p = -p Garis g tegak lurus PQ sehingga mg.mPQ = -1 → mg = 1/p y = x² - 1 y' = 2x
m = y' 1/p = 2x x = 1/(2p) y = x² - 1 = (1/(2p))² - 1 = 1/(4p²) - 1
Titik singgung garis adalah (1/(2p), 1/(4p²) - 1)
Persamaan garis singgung dengan m = 1/p y - y1 = m(x - x1) y - (1/(4p²) - 1) = 1/p (x - 1/(2p)) y - (1/(4p²) - 1) = x/p - 1/(2p²) y = x/p - 1/(2p²) + (1/(4p²) - 1) y = x/p - 2/(4p²) + 1/(4p²) - 1 y = x/p - 1/(4p²) - 1
Garis g memotong sumbu y, maka x = 0 y = x/p - 1/(4p²) - 1 = 0/p - 1/(4p²) - 1 = - 1/(4p²) - 1
Verified answer
Nomor 39g(x) = -x³ + 1/2 ax² - 1/2 x² - 3x + 8
g'(x) = -3x² + ax - x - 3
= -3x² + (a - 1)x - 3
Fungsi selalu turun untuk f'(x) < 0
-3x² + (a - 1)x - 3 < 0
a = -3
b = a - 1
c = -3
Karena f'(x) negatif, maka D < 0
D < 0
b² - 4ac < 0
(a - 1)² - 4(-3)(-3) < 0
a² - 2a + 1 - 36 < 0
a² - 2a - 35 < 0
(a + 5)(a - 7) < 0
-5 < a < 7
Fungsi selalu turun pada -5 < a < 7
Nomor 40
Titik P → x = 2p
y = x² - 1
= (2p)² - 1
= 4p² - 1
Titik P adalah (2p, 4p² - 1)
Titik Q → x = -3p
y = x² - 1
= (-3p)² - 1
= 9p² - 1
Titik Q adalah (-3p, 9p² - 1)
Gradien garis PQ
m = (y2 - y1) / (x2 - x1)
= (9p² - 1 - (4p² - 1)) / (-3p - 2p)
= 5p² / -5p
= -p
Garis g tegak lurus PQ sehingga mg.mPQ = -1 → mg = 1/p
y = x² - 1
y' = 2x
m = y'
1/p = 2x
x = 1/(2p)
y = x² - 1
= (1/(2p))² - 1
= 1/(4p²) - 1
Titik singgung garis adalah (1/(2p), 1/(4p²) - 1)
Persamaan garis singgung dengan m = 1/p
y - y1 = m(x - x1)
y - (1/(4p²) - 1) = 1/p (x - 1/(2p))
y - (1/(4p²) - 1) = x/p - 1/(2p²)
y = x/p - 1/(2p²) + (1/(4p²) - 1)
y = x/p - 2/(4p²) + 1/(4p²) - 1
y = x/p - 1/(4p²) - 1
Garis g memotong sumbu y, maka x = 0
y = x/p - 1/(4p²) - 1
= 0/p - 1/(4p²) - 1
= - 1/(4p²) - 1
Jadi, ordinatnya adalah y = - 1/(4p²) - 1