Napisz referat o :
1. Promieniotwórczość naturalna
2. rodzaje promieniowania (alfa,beta,gamma) i ich wlasciwosci
3. szeregi promieniotworcze
4. zjawisko promieniotworczosci sztucznej
5. zastosowanie promieniotworczosci sztucznej
6. promieniotworczosc - korzysci czy zagrozenie dla ludzkosci
oraz wspomnieć o Marii Sklodowskiej - Curie
1-2 strony A4 .
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Nazywa się ona tak od zdolność samoistnego wysyłania promieniowania jonizującego przez jądra niektórych pierwiastków, która występuje w przyrodzie i stale istnieje na Ziemi bez ingerencji człowieka. Do podstawowych typów przemian promieniotwórczych, w trakcie których powstaje promieniowanie jonizujące należą:
- rozpad
- wychwycenie elektronu,
- rozszczepienie samorzutne,
- promieniotwórczość protonowa
Energia ta jest emitowana w postaci cząstek alfa jądra helu cząstek beta (wysokoenergetyczne elektrony) oraz w postaci promieniowania gamma (promieniowanie elektromagnetyczne o bardzo dużej energii). Na skutek tradycyjnej radioaktywności niestabilne izotopy przechodzą w stabilniejsze, nie dochodzi jednak przy tym do całkowitego rozpadu jądra.
Promieniowanie występuje najczęściej jako zjawisko towarzyszące promieniowaniu. W wyniku emisji cząstek i jądro może pozostać w stanie wzbudzonym. W wyniku przejścia jądra do stanu normalnego emitowane jest promieniowanie. Promieniotwórczość naturalna występuje w pierwiastkach ciężkich (Z=81 do 92). Sporadycznie promieniotwórczość naturalna występuje również dla lżejszych pierwiastków: promieniotwórcze: tryt, węgiel, neodym, samar i platyna i - promieniotwórcze: potas, rubid, ind, ren. Biologiczne skutki promieniowania rozróżnia się bezpośrednie i pośrednie skutki pochłaniania energii promieniowania w żywych tkankach.
Wielkość skutków biologicznych zależy od wielu czynników:
- wielkości dawki (na przykład jednorazowa dawka większa od 0,75 Sv powoduje objawy choroby popromiennej),
- rodzaju promieniowania,
- czasu biologicznego połowicznego zaniku radioizotopu (przykładowo dla 137Cs fizyczny czas połowicznego zaniku wynosi 30 lat, natomiast biologiczny tylko około 2 lat),
- mocy dawki,
- rodzaju napromieniowanej tkanki (różne narządy i tkanki wykazują rozmaitą wrażliwość na działanie promieniowania),
- sposobu ekspozycji (zewnętrznej lub wewnętrznej) - skażenie wewnętrzne powoduje zdecydowanie większe szkody w organizmie,
- czasu pochłaniania (dawka jednorazowa czy też kilka mniejszych),
- skutki promieniowania nie ujawniają się poniżej pewnej wielkości dawki - zwanej dawką progową, a międzynarodowe normy podają dopuszczalne graniczne wielkości dawek, znacznie mniejsze od progowych.
Skutki bezpośrednie występują wtedy, gdy cząstki promieniowania zrywają wiązania molekularne w ważnych cząsteczkach na przykład kwasu nukleinowego.
Skutki pośrednie polegają na rozbiciu mniej ważnych molekuł wody (tzw. radioliza wody), co prowadzi do powstania aktywnych jonów i wolnych rodników.
Szkodliwe skutki dzieli się na somatyczne, ujawniające się bezpośrednio u osoby napromieniowanej (choroba popromienna) i genetyczne, ujawniające się dopiero w następnym pokoleniu.
Skutki somatyczne dalej można podzielić na wczesne i późne oraz stochastyczne (odznaczają się tym, że ich wystąpienie zależne jest od wielkości dawki, ale stopień ich nasilenia nie zależy od dawki; należą do nich białaczka lub inne nowotwory) i niestochastyczne (stopień nasilenia tych skutków zwiększa się wraz z dawką pochłoniętą).
Skutki te dotknęły naszą rodaczkę Marię Skłodowską-Curie, która była jedną z pierwszych ofiar promieniowania. W jej czasach początkowo nie zdawano sobie sprawy z biologicznych skutków dużych dawek promieniowania.promieniotwórczosć
Promieniowanie zazwyczaj kojarzy się człowiekowi z wybuchem elektrowni w Czarnobylu na Ukrainie w 1986 roku. Była to największa i najtragiczniejsza awaria reaktora jądrowego, która pochłonęła wiele ofiar. Ocenia się, że 25% powierzchni Polski zostało silnie skażonych. Największe skażenie dotknęło północno – wschodnie oraz częściowo południowe regiony kraju. Skutki tej awarii mają różnorodny charakter. Skażenie jodem szybko ustąpiło, na skutek krótkotrwałego okresu połowicznego rozpadu pierwiastków . Pozostał jeszcze problem skażenia izotopami cezu i strontu, których okresy połowicznego rozpadu wynoszą prawie 30 lat. Poza tym niektóre skutki mogą ujawnić się dopiero za parę lat. Musimy jednak pamiętać, że tutaj zawiódł człowiek nie promieniotwórczość. Elektrownie atomowe są zdecydowanie dobrodziejstwem i przyszłością świata niż zagrożeniem. W moich oczach strach budzą natomiast bomby atomowe. Same Stany Zjednoczone posiadają potencjał atomowy zdolny do zniszczenia połowy ludzkości w ciągu 45 minut.
1.Jest jednak wiele powodów które przemawiają za tym że promieniowanie jest dobre. Są to:
a) diagnoza chorób;
b) badanie wpływu leków na organizm
- np.: izotop 99Tc w postaci związku chemicznego wprowadza się do organizmu i śledzi jego drogę przez poszczególne narządy; w ten sposób bada się funkcjonowanie narządów;
c) aparatura rentgenowska
- zdjęcia rentgenowskie przy zwichnięciach czy złamaniach;
d) radioterapia:
- stosuje się ją w przypadku nowotworów szczególnie czerniaka (nowotwór skóry);
- jod 131 stosuje się do leczenia tarczycy;
e) sterylizacja sprzętu medycznego;
f) modyfikacji polimerów, materiałów oraz przyrządów półprzewodnikowych;
g) barwienie:
- tkanin,
- szkła,
- sztucznych oraz naturalnych kamieni;
h) analiza aktywacyjna, czyli jądrowa analiza składu materiałów; za pomocą tej metody można określić lub wykryć zanieczyszczenia, określić ilościową zawartość metali ciężkich w odpadach, azotu w ziarnach, nawozach sztucznych itd.; jej zaletą jest możliwość oznaczania jednocześnie wielu pierwiastków.
i) wytwarzanie termokurczliwych rurek i taśm, które doskonale sprawdzają się jako izolacja elektryczna; znajdują zastosowanie wszędzie tam, gdzie trzeba wykonać trwałe i szczelne połączenia elementów;
j) technologia oczyszczania gazów odlotowych z instalacji spalających m.in.: węgiel (napromieniowanie gazów wiązką elektronów powoduje zredukowanie emisji dwutlenku siarki o 95%, a tlenków azotu o 80%);
k) zastosowanie promieniowania w tzw.: aparaturze radiometrycznej, którą stanowią różnego rodzaju mierniki, czujniki, detektory i regulatory
l) napęd wielu pojazdów:
- np.: w transporcie wodnym (reaktory takie mogą w przypadku zatopienia okrętu stanowić potencjalne źródło poważnego skażenia środowiska pierwiastkami promieniotwórczymi stanowiącymi ich paliwo);
m) izotop węgla 14C zastosowano jako zegar archeologiczny (na podstawie znajomości pierwotnego stężenia tego izotopu oraz okresu połowiczego rozpadu, określa się wiek wykopalisk, w których znajdują się szczątki zawierające związki węgla);
2.Jest także kilka powodów które przemawiają przeciw promieniowaniu. Są to:
a) reakcje rozszczepienia jąder pierwiastków promieniotwórczych przebiegają w sposób niekontrolowany wykorzystuje się je do produkcji broni masowego rażenia. W czasie wybuchu uwalnia się ogromna energia. Podczas zrzucenia bomb na Hiroszimę i Nagasaki wiele osób zmarło od razu, a u innych choroba popromienna rozwinęła się po kilku latach. Dlatego też produkcja i stosowanie izotopów powinna się odbywać pod ścisłą międzynarodową kontrolą.
b) pierwiastki promieniotwórcze negatywnie działają na organizmy, również na człowieka. W wyniku pochłonięcia przez organizm dużych dawek promieniowania może wystąpić białaczka ? nowotwór krwi, katarakta ? choroba oczu, oraz choroba popromienna objawiająca się biegunką i nudnościami.
c) awarie w elektrowniach jądrowych mogą być przyczyną katastrof, np. w 1986 roku wybuch w Czarnobylu nastąpiła awaria reaktora jądrowego, która doprowadziła do wybuchu, w efekcie, czego do atmosfery dostały się radioaktywne izotopy 131I oraz 137Cs, skażając znaczną część Europy.
d) duży problem w wypadku energetyki jądrowej stanowią także odpady promieniotwórcze, powstające jako efekty działania reaktorów. (Istnieje niebezpieczeństwo, że dostaną się do środowiska).
e) poważne niebezpieczeństwo dla środowiska ma też nieodpowiedzialne unieszkodliwianie i gromadzenie odpadów przemysłowych zawierających substancje promieniotwórcze, głównie w hutnictwie. (Składowanie na hałdach, mogą przedostać się do powietrza i do wody, a wraz z jej obiegiem do gleby i organizmów).
f) napęd wielu pojazdów:
- np.: w transporcie wodnym (reaktory takie mogą w przypadku zatopienia okrętu stanowić potencjalne źródło poważnego skażenia środowiska pierwiastkami promieniotwórczymi stanowiącymi ich paliwo);
Spróbujmy zatem na koniec odpowiedzieć sobie, czy współczesny człowiek, żyjący w epoce szybko rozwijającej się cywilizacji, wyposażony w coraz to bardziej doskonałą i dokładną aparaturę badawczą w konfrontacji z wiedzą naukowców z całego świata ma szansę na zniwelowanie złych skutków promieniotwórczości i wykorzystaniu energii jądrowej dla dobra przyszłości naszej planety? Moim zdaniem ludzie mogą a nawet powinni wykorzystać energię jądrową dla dobra naszej planety a nie budować z jej udziałem broni i urządzeń które mogą zniszczyć Ziemię.