Odpowiedź:
Szczegółowe wyjaśnienie:
2.
a) log3(3)^20 = 20
b) log5(5)^0,1 = 0,1
c) log0,3(√0,3) = log0,3(0,3)^(1/2) = 1/2
d) log√3(√3^10) = 10log√3(√3) = 10
e) 4^[log4(5)] = 5
f) 3^[7log3(2)] = 3^[log3(2)^7 = 3^[log3(128)] = 128
g) 25^[log5(3)] = 5^[2log5(3)] = 5^[log5(9)] = 9
h) 7^[log49(4)] = 7^[log7(4)/log7(49)] = 7^[log7(4)/2] = 7^[1/2 log7(4)] =
7^[log7(2)] = 2
3.
a) log3(2/9) + log3(1/6) = log3(2/54) = log3(1/27) = log3(3)^(-3) = -3
b) log2(10) + log2(1,6) = log2(16) = 4
c) log (25) + log (4) = log (100) = 2
d) log5(√10) - log5(√2) = log5(√5) = 1/2
e) log (9) - log (0,9) = log 10 = 1
f) log8(7) - log8(14) = log8(1/2) = x czyli:
8^x = 1/2
2^(3x) = 2^(-1)
3x = -1
x = -1/3
zad2
a)log₃3²⁰=20log₃3=20
b)
c)
d)
e)
f)
g)
h)
zad3
a)
c)log25+log4=lof(25*4)=log100=log10²=2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Szczegółowe wyjaśnienie:
2.
a) log3(3)^20 = 20
b) log5(5)^0,1 = 0,1
c) log0,3(√0,3) = log0,3(0,3)^(1/2) = 1/2
d) log√3(√3^10) = 10log√3(√3) = 10
e) 4^[log4(5)] = 5
f) 3^[7log3(2)] = 3^[log3(2)^7 = 3^[log3(128)] = 128
g) 25^[log5(3)] = 5^[2log5(3)] = 5^[log5(9)] = 9
h) 7^[log49(4)] = 7^[log7(4)/log7(49)] = 7^[log7(4)/2] = 7^[1/2 log7(4)] =
7^[log7(2)] = 2
3.
a) log3(2/9) + log3(1/6) = log3(2/54) = log3(1/27) = log3(3)^(-3) = -3
b) log2(10) + log2(1,6) = log2(16) = 4
c) log (25) + log (4) = log (100) = 2
d) log5(√10) - log5(√2) = log5(√5) = 1/2
e) log (9) - log (0,9) = log 10 = 1
f) log8(7) - log8(14) = log8(1/2) = x czyli:
8^x = 1/2
2^(3x) = 2^(-1)
3x = -1
x = -1/3
Odpowiedź:
zad2
a)log₃3²⁰=20log₃3=20
b)
c)
d)
e)
f)
g)
h)
zad3
a)
b)
c)log25+log4=lof(25*4)=log100=log10²=2
d)
e)
f)
Szczegółowe wyjaśnienie: