⊹ Limit pemfaktoran
[tex] \begin{aligned} \sf \lim_{x \to 2} \frac{x^2 + 2x - 8}{x - 2} &= \sf \lim_{x \to 2} \frac{(x + 4)\cancel{(x - 2)}}{\cancel{x - 2}} \\ &= \sf \lim_{x \to 2}x + 4 \\ &= \sf 2 + 4 \\ &= \sf 6 \end{aligned}[/tex]
⌗SDaze ⋆࿐໋₊
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
⊹ Limit pemfaktoran
[tex] \begin{aligned} \sf \lim_{x \to 2} \frac{x^2 + 2x - 8}{x - 2} &= \sf \lim_{x \to 2} \frac{(x + 4)\cancel{(x - 2)}}{\cancel{x - 2}} \\ &= \sf \lim_{x \to 2}x + 4 \\ &= \sf 2 + 4 \\ &= \sf 6 \end{aligned}[/tex]
⌗SDaze ⋆࿐໋₊