Respuesta:
512p²¹ - 0,064y³ = (8p⁷ - 4y/10)(64p¹⁴ + 32p⁷y/10 + 16y²/100)
Explicación paso a paso:
Factorizar.
Caso:
Diferencia de cubos.
Aplicas:
a³ - b³ = (a - b)(a² + ab + b²)
512p²¹ - 0,064y³ 0,064 = 64/1000 = 4³/10³ = (4/10)³
8³(p⁷)³ - (4/10)³y³
(8p⁷ - 4y/10)((8p⁷)² + (8p⁷)(4y/10) + (4y/10)²) =
(8p⁷ - 4y/10)(8²p¹⁴ + 32p⁷y/10 + 4²y²/10²) =
(8p⁷ - 4y/10)(64p¹⁴ + 32p⁷y/10 + 16y²/100)
Para resolver ejercicio aplicamos ley de la potenciacion.
(aⁿ)ˣ = aⁿ.ˣ
(a/b)ⁿ = aⁿ/bⁿ
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
512p²¹ - 0,064y³ = (8p⁷ - 4y/10)(64p¹⁴ + 32p⁷y/10 + 16y²/100)
Explicación paso a paso:
Factorizar.
Caso:
Diferencia de cubos.
Aplicas:
a³ - b³ = (a - b)(a² + ab + b²)
512p²¹ - 0,064y³ 0,064 = 64/1000 = 4³/10³ = (4/10)³
8³(p⁷)³ - (4/10)³y³
(8p⁷ - 4y/10)((8p⁷)² + (8p⁷)(4y/10) + (4y/10)²) =
(8p⁷ - 4y/10)(8²p¹⁴ + 32p⁷y/10 + 4²y²/10²) =
(8p⁷ - 4y/10)(64p¹⁴ + 32p⁷y/10 + 16y²/100)
Para resolver ejercicio aplicamos ley de la potenciacion.
(aⁿ)ˣ = aⁿ.ˣ
(a/b)ⁿ = aⁿ/bⁿ