Mam zadanie z maty,z ciągu arytmetycznego.Nie wiem jak za nie się zabrać.Oto treść: Suma n początkowych wyrazów pewnego ciągu arytmetycznego wyraża się wzorem Sn= 2n²+3n.Znajdź wyraz 10 tego ciągu.Proszę o rozwiązanie tego zadania bo mi nic z niego nie wychodzi. ;-)
amita
Żeby znaleźć dziesiąty wyraz ciągu, trzeba wyznaczyć wzór ogólny dla tego ciągu. S(n+1) - Sn = 2(n+1)² + 3(n+1) - (2n²+3n) = 2(n² +2n + 1) + 3n + 3 - 2n² - 3n = 2n² + 4n + 2 + 3n + 3 - 2n² - 3n = 4n + 5
an = 4n + 5 a10 = 4*10 + 5 = 45
1 votes Thanks 0
madzia333
Mam zadanie z maty,z ciągu arytmetycznego.Nie wiem jak za nie się zabrać.Oto treść: Suma n początkowych wyrazów pewnego ciągu arytmetycznego wyraża się wzorem Sn= 2n²+3n.Znajdź wyraz 10 tego ciągu.
S(n+1) - Sn = 2(n+1)² + 3(n+1) - (2n²+3n) = 2(n² +2n + 1) + 3n + 3 - 2n² - 3n = 2n² + 4n + 2 + 3n + 3 - 2n² - 3n = 4n + 5
an = 4n + 5
a10 = 4*10 + 5 = 45
Suma n początkowych wyrazów pewnego ciągu arytmetycznego wyraża się wzorem Sn= 2n²+3n.Znajdź wyraz 10 tego ciągu.
a10=S10-S9
a10=2*100+30 -2*81-27=200+30 -162-27=41