" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
(4+2*|x-1|-|x+1|*|x-1|)/(|x+1|-2)≥0
1.
dla x<-1
4/(-x-1-2)≥-(x-1)
-4/(x+3)+x-1≥0 /*(x+3)² , x≠-3
-4(x+3)+(x-1)(x+3)²≥0
(x+3)*[(x-1)(x+3)-4]≥0
(x+3)*(x²+3x-x-3-4)≥0
(x+3)*(x²+2x-7)≥0
Δ=4+4*7=32
√Δ=4√2
Miejsca zerowe:
x=-3
x=1/2*(-2-4√2)=-1-2√2 v x=-1+2√2
____-1-2√2____-3__-1___-1+2√2____>x
_ _ 0 + + 0 _ _ 0 ......
x∈<-1-2√2, -3)
2.
dla x∈<-1, 1)
4/(x+1-2)≥ - (x-1)
4/(x-1)+(x-1)≥0 /*(x-1) , (x-1)<0
4+(x-1)²≤0
x²-2x+5≤0
Δ=4-4*5=-16<0 nie ma miejsc zerowych, a>0 nierownosc sprzeczna.
dla x≥1
4/(x-1)≥x-1 /*(x-1)>0, x≠1
4≥(x-1)²
(x-1)²-4≤0
(x-1-2)(x-1+2)≤0
(x-3)(x+1)≤0
____
____-1__1/____|3______>x
+ + 0 _ X _ 0 + +
x∈(1,3>
W odpowiedzi suma rozwiazan z pkt.1-3
Odp. x∈<-1-2√2, -3) u (1,3>