Logarytmia
1)
2)
3)
4)
5)
6)
7)
8)
1) log 3 [ x + 2 ] = 4 <=> x+2 = 3^4 =81 <=> x = 79
x = 79
=========
2) log (3^x) [ 9 ] = - 1 <=> ( 3 ^x)^(-1) = 9 <=> 3^ (-x) = 3^2 <=> -x = 2 <=> x = - 2
x = - 2
==========
3) log 4 [ x - 5 ] = 4 <=> x - 5 = 4^4 = 256 <=> x = 261
x = 261
============
4) log 3 [ x - 2 ] + log 3 [ x ] = 0
założenie: x > 2 i x > 0 => x > 2
log 3 [ x - 2] = - log 3 [ x ]
log 3 [x - 2] = log 3 [ x ^(-1)]
log 3 [ x - 2 ] = log 3 [ 1/x ]
x - 2 = 1/x / * x
x^2 - 2x - 1 = 0
-------------------
delta = (-2)^2 - 4*1*(-1) = 4 + 4 = 4*2
p (delty ) = 2 p(2)
x = [ 2 - 2 p(2)]/2 = 1 - p(2) < 0 - odpada
x = [ 2 + 2 p(2)]/2 = 1 + p(2) > 2
x = 1 + p(2)
===========
ln [x + 1] + ln [x + 2 ] = 0
założenie: x> - 1 i x > - 2 czyli x > - 1
ln[ x + 1 ] = - ln [ x + 2]
ln [ x + 1 ] = ln[ 1/(x + 2 )]
x + 1 = 1 /(x + 2) / * x+ 2
(x +1)*(x + 2) = 1
x^2 +2x + x + 2 - 1 = 0
x^2 + 3 x + 1 = 0
----------------------
delta = 3^2 - 4*1*1 = 9 - 4 = 5
p (delty) = p(5)
x = [ - 3 - p(5)]/2 < - 1 - odpada
x = [ - 3 + p(5)]/2 > - 1
Odp. x = - 1,5 + 0,5 p(5)
==========================
log 4 [ x ] + 4 log 4 [ x - 5 ]
coś brakuje
log 1/5 [ x + 4 ] + log 1/5 [ x ] > = log 1/5 [ 3 ] ; założenie: x > 0
log 1/5 [ x^2 + 4 x ] > = log 1/5 [ 3 ]
x^2 + 4 x < = 3
x^2 + 4 x -3 < = 0
delta = 4^2 - 4*1*(-3) = 16 + 12 = 28 = 4*7
p (delty) = 2 p(7)
x = [ - 4 - 2 p(7)]/ 2 = - 2 - p(7) < 0 - odpada
x = [ - 4 + 2 p(7)]/2 = - 2 + p(7) > 0
Odp. x = -2 + p(7)
=======================
4 ln 2 - ln x + ln 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
1) log 3 [ x + 2 ] = 4 <=> x+2 = 3^4 =81 <=> x = 79
x = 79
=========
2) log (3^x) [ 9 ] = - 1 <=> ( 3 ^x)^(-1) = 9 <=> 3^ (-x) = 3^2 <=> -x = 2 <=> x = - 2
x = - 2
==========
3) log 4 [ x - 5 ] = 4 <=> x - 5 = 4^4 = 256 <=> x = 261
x = 261
============
4) log 3 [ x - 2 ] + log 3 [ x ] = 0
założenie: x > 2 i x > 0 => x > 2
log 3 [ x - 2] = - log 3 [ x ]
log 3 [x - 2] = log 3 [ x ^(-1)]
log 3 [ x - 2 ] = log 3 [ 1/x ]
x - 2 = 1/x / * x
x^2 - 2x - 1 = 0
-------------------
delta = (-2)^2 - 4*1*(-1) = 4 + 4 = 4*2
p (delty ) = 2 p(2)
x = [ 2 - 2 p(2)]/2 = 1 - p(2) < 0 - odpada
x = [ 2 + 2 p(2)]/2 = 1 + p(2) > 2
x = 1 + p(2)
===========
5)
ln [x + 1] + ln [x + 2 ] = 0
założenie: x> - 1 i x > - 2 czyli x > - 1
ln[ x + 1 ] = - ln [ x + 2]
ln [ x + 1 ] = ln[ 1/(x + 2 )]
x + 1 = 1 /(x + 2) / * x+ 2
(x +1)*(x + 2) = 1
x^2 +2x + x + 2 - 1 = 0
x^2 + 3 x + 1 = 0
----------------------
delta = 3^2 - 4*1*1 = 9 - 4 = 5
p (delty) = p(5)
x = [ - 3 - p(5)]/2 < - 1 - odpada
x = [ - 3 + p(5)]/2 > - 1
Odp. x = - 1,5 + 0,5 p(5)
==========================
6)
log 4 [ x ] + 4 log 4 [ x - 5 ]
coś brakuje
7)
log 1/5 [ x + 4 ] + log 1/5 [ x ] > = log 1/5 [ 3 ] ; założenie: x > 0
log 1/5 [ x^2 + 4 x ] > = log 1/5 [ 3 ]
x^2 + 4 x < = 3
x^2 + 4 x -3 < = 0
delta = 4^2 - 4*1*(-3) = 16 + 12 = 28 = 4*7
p (delty) = 2 p(7)
x = [ - 4 - 2 p(7)]/ 2 = - 2 - p(7) < 0 - odpada
x = [ - 4 + 2 p(7)]/2 = - 2 + p(7) > 0
Odp. x = -2 + p(7)
=======================
8)
4 ln 2 - ln x + ln 3
coś brakuje