lim (1/sin x - 1/tan x) x→0 = lim (tan x - sin x) / (sin x . tan x) x→0 = lim ((sin x / cos x) - sin x) / (sin x . sin x / cos x) x→0 = lim (sin x - sin x cos x)/cos x . (cos x/sin² x) x→0 = lim (sin x (1 - cos x)) / sin² x) x→0 = lim (1 - cos x)/sin x x→0 = lim (1 - cos x)/x . (x/sin x) x→0 = 0 . 1 = 0
2 votes Thanks 1
rahmyidris
hai kak senior :D (@Rahmanauliyah8-DB45)
Verified answer
Bab LimitMatematika SMA Kelas X
lim (1/sin x - 1/tan x)
x→0
= lim (tan x - sin x) / (sin x . tan x)
x→0
= lim ((sin x / cos x) - sin x) / (sin x . sin x / cos x)
x→0
= lim (sin x - sin x cos x)/cos x . (cos x/sin² x)
x→0
= lim (sin x (1 - cos x)) / sin² x)
x→0
= lim (1 - cos x)/sin x
x→0
= lim (1 - cos x)/x . (x/sin x)
x→0
= 0 . 1
= 0
Verified answer
Limit Trigometrilim(x->0) ( 1/sin x - 1/tanx)
lim(x->0) (1/sin x - cosx/sin x)
lim(x->0) (1 - cos x)/(sin x)
lim(x->0) (2 sin² 1/2 x ) / sin x
= 2 (1/2 x)² /(x)
= 1/2 x
x =0 --> limit = 1/2(0) = 0