PEMBAHASAN
Limit Tak Hingga
no. 1
lim x→∞ (2x - 1) - √(4x² + 10x - 5)
= lim x→∞ √(2x - 1)² - √(4x² + 10x - 5)
= lim x→∞ √(4x² - 4x + 1) - √(4x² + 10x - 5)
= (-4 - 10)/(2√4)
= -14/4
= -7/2
= -3,5
__
no. 2
lim x→∞ (2x + sin x)/(x - cos 2x)
= lim x→∞ x(2 + (sin x /x)) / x(1 - (cos 2x / x))
= lim x→∞ (2 + (sin x /x)) / (1 - (cos 2x / x))
= (2 + sin x/∞) / (1 - cos 2x/∞)
= (2 + 0) / (1 - 0)
= 2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
PEMBAHASAN
Limit Tak Hingga
no. 1
lim x→∞ (2x - 1) - √(4x² + 10x - 5)
= lim x→∞ √(2x - 1)² - √(4x² + 10x - 5)
= lim x→∞ √(4x² - 4x + 1) - √(4x² + 10x - 5)
= (-4 - 10)/(2√4)
= -14/4
= -7/2
= -3,5
__
no. 2
lim x→∞ (2x + sin x)/(x - cos 2x)
= lim x→∞ x(2 + (sin x /x)) / x(1 - (cos 2x / x))
= lim x→∞ (2 + (sin x /x)) / (1 - (cos 2x / x))
= (2 + sin x/∞) / (1 - cos 2x/∞)
= (2 + 0) / (1 - 0)
= 2