Liczby -3,4,2 to pierwiastki wielomianu. Wyznacz wielomian stopnia czwartego.
W(x) = (x + 3)(x - 4)(x - 2)( x - 2)
W(x) = (x² - 4x + 3x - 12)(x² - 2x - 2x +4)
W(x) = (x² - x - 12)(x² - 4x + 4)
W(x) = x⁴ - 4x³ + 4x² - x³ + 4x² - 4x - 12x² + 48x - 48
W(x) = x⁴ - 5x³ - 4x² + 44x - 48 ----- odpowiedź
-3,4,2 - pierwiastki wielomianu
Jeden z nich jest podwójny, np. 2 lub 4
dla 2:
W(x) = (x+3)(x-4)(x-2)(x-2)
W(x) = (x^2 - 4x + 3x -12)(x-2)^2
W(x) = (x^2-x-12)(x^2 - 4x+4)
W(x) = x^4 - 4x^3 + 4x^2 - x^3 + 4x^2 - 4x -12x^2 + 48x - 48
W(x) = x^4 - 5x^3 - 4x^2 + 44x - 48
==============================
dla 4:
W(x) = (x+3)(x-4)(x-4)(x-2)
W(x) = (x+3)(x-2)(x-4)²
W(x) = (x²-2x+3x-6)(x²-8x+16)
W(x) = (x²+x-6)(x²-8x+16)
W(x) = x⁴-8x³+16x²+x³-8x²+16x-6x²+48x-96
W(x) = x⁴-7x³+2x²+64x-96
======================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
W(x) = (x + 3)(x - 4)(x - 2)( x - 2)
W(x) = (x² - 4x + 3x - 12)(x² - 2x - 2x +4)
W(x) = (x² - x - 12)(x² - 4x + 4)
W(x) = x⁴ - 4x³ + 4x² - x³ + 4x² - 4x - 12x² + 48x - 48
W(x) = x⁴ - 5x³ - 4x² + 44x - 48 ----- odpowiedź
-3,4,2 - pierwiastki wielomianu
Jeden z nich jest podwójny, np. 2 lub 4
dla 2:
W(x) = (x+3)(x-4)(x-2)(x-2)
W(x) = (x^2 - 4x + 3x -12)(x-2)^2
W(x) = (x^2-x-12)(x^2 - 4x+4)
W(x) = x^4 - 4x^3 + 4x^2 - x^3 + 4x^2 - 4x -12x^2 + 48x - 48
W(x) = x^4 - 5x^3 - 4x^2 + 44x - 48
==============================
dla 4:
W(x) = (x+3)(x-4)(x-4)(x-2)
W(x) = (x+3)(x-2)(x-4)²
W(x) = (x²-2x+3x-6)(x²-8x+16)
W(x) = (x²+x-6)(x²-8x+16)
W(x) = x⁴-8x³+16x²+x³-8x²+16x-6x²+48x-96
W(x) = x⁴-7x³+2x²+64x-96
======================