liczby −3 i 4 sa pierwiastkami równania 2x2+bx+c=0 wyznacz współczynniki b i c
Funkcja kwadratowa:
Postać ogólna: y=ax²+bx+c
Δ=b²-4ac
x₁=[-b-√Δ]/2a
x₂=[-b+√Δ]/2a
Postać iloczynowa: y=a(x-x₁)(x-x₂), gdzie x₁,x₂ - miejsca zerowe (pierwiastki).
====================================
2x²+bx+c=0
a=2
Liczby x₁=-3 i x₂=4 są pierwiastkami równania, zatem podstawiam do postaci iloczynowej:
a(x-x₁)(x-x₂)=0
2*(x+3)(x-4)=0
2*(x²+3x-4x-12)=0
2*(x²-x-12)=0
2x²-2x-24=0
Czyli: b=-2, c=-24
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Funkcja kwadratowa:
Postać ogólna: y=ax²+bx+c
Δ=b²-4ac
x₁=[-b-√Δ]/2a
x₂=[-b+√Δ]/2a
Postać iloczynowa: y=a(x-x₁)(x-x₂), gdzie x₁,x₂ - miejsca zerowe (pierwiastki).
====================================
2x²+bx+c=0
a=2
Liczby x₁=-3 i x₂=4 są pierwiastkami równania, zatem podstawiam do postaci iloczynowej:
a(x-x₁)(x-x₂)=0
2*(x+3)(x-4)=0
2*(x²+3x-4x-12)=0
2*(x²-x-12)=0
2x²-2x-24=0
Czyli: b=-2, c=-24