Krawędź Boczna ostrosłupa prawidłowego trójkątnego jest nachylona do płaszczyzny podstawy pod kątem 60. Odległość spodku wysokości ostrosłupa od krawędzi bocznej jest równa 4. Oblicz objętość tego ostrosłupa.
izka982
Spodek wysokości leży w miejscu przeciecia się wysokości trójkata równobocznego odległość do wierzchołka podstawy=⅔ h podstawy dzieki temu obliczysz bok trójkąta →4=⅔h→h podstawy=4×3/2=6 6=a√3:2→a√3=12 a=4√3 po usunieciu niewymierniosci z mianownika pole podstawy =a²√3:4=[4√3]²√3:4 →pole podstawy=12√3 H bryły jest wysokoscia trójkąta powstałego z krawędzi ,⅔ wysokosci podstawy i H bryły krawedz jest 2 razy wieksza od tych 4 cm czyli ma 8 a H=a√3:2=4√3 V=Pp×H=12√3×4√3=144 jedn.³-pozdrawiam