Korzystając ze wzoru dwumianowego Newtona, zapisz w postaci sumy:
(x-2) do 7 potęgi.
Proszę o pomoc:)
( 7 nad 0 ) = 1
(7 nad 1 ) = 7
(7 nad 2 ) = [ 7 !]/ [2* 5 !] = [ 6*7]/2 = 21
(7 nad 3 ) = [ 7 ! ] / [ 3 ! * 4 ! ] = [ 5*6*7]/6 = 5*7 = 35
(7 nad 4 ) = 35
( 7 nad 5) = 21
(7 nad 6) = 7
( 7 nad 7 ) = 1
zatem
( x -2) ^7 = x^7 + 7x^6 *( -2) + 21 x^5*(-2)^2 + 35x^4 *(-2)^3 + 35 x^3*(-2)^4 + 21 x^2 *(-2)^5 + 7 x*(-2)^6 + (-2)^7 =
= x^7 + 14 x^6 + 84 x^5 - 280 x^4 + 560 x^3 - 672 x^2 + 448 x - 128
==============================================================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
( 7 nad 0 ) = 1
(7 nad 1 ) = 7
(7 nad 2 ) = [ 7 !]/ [2* 5 !] = [ 6*7]/2 = 21
(7 nad 3 ) = [ 7 ! ] / [ 3 ! * 4 ! ] = [ 5*6*7]/6 = 5*7 = 35
(7 nad 4 ) = 35
( 7 nad 5) = 21
(7 nad 6) = 7
( 7 nad 7 ) = 1
zatem
( x -2) ^7 = x^7 + 7x^6 *( -2) + 21 x^5*(-2)^2 + 35x^4 *(-2)^3 + 35 x^3*(-2)^4 + 21 x^2 *(-2)^5 + 7 x*(-2)^6 + (-2)^7 =
= x^7 + 14 x^6 + 84 x^5 - 280 x^4 + 560 x^3 - 672 x^2 + 448 x - 128
==============================================================