Korzystając ze wzorów skróconego mnożenia
(a+b)²=a²+2ab+b²
(a-b)²=2²-2ab+b²
(a+b)(a-b)=a²-b²
wykonaj poniższe przykłady:
a) 2(x-y)(x+y)-3(x-2y)²
b) 5(s+3t)(3t-s)-2(s+2t)²
c) (z+0,3)²-(a+4)(4-a)-6(3-a)
d) (a-3)²+(x+√5)(x-√5)-5(x+2)²
e) (5-2x)²+(x+√5_(x-√5)-5(x+2)²
f) (2k-l²)² - 2(k+l²)(l²-k)+(k+2l²)²
daje naj :)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) 2(x-y)(x+y)-3(x-2y)²= 2(x²-y²)-3(x²-4xy+4y²)=
2x²-2y² -3x²+12xy -12y²= 12xy - 14y²-x²
b) 5(s+3t)(3t-s)-2(s+2t)²= 5(9t²-s²)-2(s²+2st+4t²)=
45t²-5s²-2s²-4st-8t²= 37t²-7s²-4st
c) (z+0,3)²-(a+4)(4-a)-6(3-a)=
z² +0,6z+0,09-(16-a²)-18+6a=
z² +0,6z+0,09-16+a²-18+6a=
z²-33,91+0,6z+a²+6a
d) (a-3)²+(x+√5)(x-√5)-5(x+2)²=
a²-6a+9+x²-5-5(x²+4x+4)=
a²-6a+9+x²-5 -5x²-20x -20=
a²-4x²-20x-6a-16
e) (5-2x)²+(x+√5_(x-√5)-5(x+2)²=
25-20x+4x²+x²-5 -5(x²+4x+4) =
25-20x+4x²+x²-5- 5x²-20x -20 = -40x
f) (2k-l²)² - 2(k+l²)(l²-k)+(k+2l²)² =
4k²-4kl² +l^4 - 2(l^4-k²) + k²+4kl²+4l^2=
4k²-4kl² +l^4 - 2l^4+2k²+ k²+4kl²+4l^2 = 7k² +4l²
a) 2(x-y)(x+y)-3(x-2y)²=2(x²-y²)-3(x²-4xy+4y²)=2x²-2y²-3x²+12xy-12y²=
=-x²-14y²+12xy
b) 5(s+3t)(3t-s)-2(s+2t)²=5(9t²-s²)-2(s²+4st+t²)=45t²-5s²-2s²-8st-2t²=
=43t²-7s²-8st
c) (z+0,3)²-(a+4)(4-a)-6(3-a)=z²+0,6z+0,09-(16-a²)-18+6a=
=z²+0,6z+0,09-16+a²-18+6a=a²+z²+6a+0,6z-33,91
d) (a-3)²+(x+√5)(x-√5)-5(x+2)²=a²-6a+9+x²-5-5(x²+4x+4)=
=a²-6a+9+x²-5-5x²-20x-20=a²-4x²-6a-20x-16
e) (5-2x)²+(x+√5_(x-√5)-5(x+2)²=25-20x+4x²+x²-5-5(x²+4x+4)=
20-20x+5x²-25x²-20x-20=-20x²-40x
f) (2k-l²)² - 2(k+l²)(l²-k)+(k+2l²)²=4k²-4kl²+l⁴-2(l⁴-k²)+k²+4kl²+4l⁴=
=4k²-4kl²+l⁴-2l⁴+2k²+k²+4kl²+4l⁴=7k²+3l⁴