Korzystajac z definicji oblicz pochodna f(x)= trzeci pierwiastek z x
pochodna z f(x) = x^n = n*x^(n-1)
f(x) = ∛x
pochodna z f(x) = pochodna z x¹/³ = 1/3 · x^(⅓⁻¹) = 1/3 · x^⁻²/³ = 1/3 · (1/x)²/³ = 1/3 ·(1/∛x²) = 1/3∛x²
---------------------------------------------------------------------------------------------------------
Def.
Pochodną funkcji f(x) w punkcie x₀ nazywamy granicę :
f(x₀+Δx) - f(x₀)
lim (Δx -->0) -------------------- , co zapisujemy:
Δx
f(x) - f(x₀)
lim(x --> x₀) ---------------
x - x₀
∛x - ∛x₀ ∛x²+∛(x·x₀)+∛(x₀²)
(∛x)" = lim (x ->x₀) [--------------- · ----------------------------- ] =
x - x₀ ∛x²+∛(x·x₀)+∛(x₀²)
lim (x ->x₀) --------------------------------------- =
(x-x₀)·((∛x²+∛(x·x₀)+∛(x²·x₀))
1
lim(x ->x₀) -------------------------- = 1/3∛x₀²
∛x²+∛(x·x₀)+∛x₀²
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
pochodna z f(x) = x^n = n*x^(n-1)
f(x) = ∛x
pochodna z f(x) = pochodna z x¹/³ = 1/3 · x^(⅓⁻¹) = 1/3 · x^⁻²/³ = 1/3 · (1/x)²/³ = 1/3 ·(1/∛x²) = 1/3∛x²
---------------------------------------------------------------------------------------------------------
Def.
Pochodną funkcji f(x) w punkcie x₀ nazywamy granicę :
f(x₀+Δx) - f(x₀)
lim (Δx -->0) -------------------- , co zapisujemy:
Δx
f(x) - f(x₀)
lim(x --> x₀) ---------------
x - x₀
∛x - ∛x₀ ∛x²+∛(x·x₀)+∛(x₀²)
(∛x)" = lim (x ->x₀) [--------------- · ----------------------------- ] =
x - x₀ ∛x²+∛(x·x₀)+∛(x₀²)
x - x₀
lim (x ->x₀) --------------------------------------- =
(x-x₀)·((∛x²+∛(x·x₀)+∛(x²·x₀))
1
lim(x ->x₀) -------------------------- = 1/3∛x₀²
∛x²+∛(x·x₀)+∛x₀²