" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
f(x,y) = x + 3y
x+ 2y ≤ 8
3x + 2y ≤12
x,y ≥ 0
..
x+ 2y = 8
x = 0, y = 4 --> A (0,4)
y = 0 , x = 8--> B (8,0)
3x + 2y = 12
x = 0, y = 6 --> C(0,6)
y = 0, x = 4 --> D(4,0)
titik potong
x + 2y = 8
3x + 2y = 12
------------------(-)
2x = 4 --> x= 2
x + 2y = 8
2 + 2y = 8
2y = 6
y = 3
E( 2, 3)
Daerah penyelesaian pertidaksamaannya dengan titk pojok
A(0,4) ,D(4,0), E (2,3)
NIlai maksimum untuk f(x,y) = x + 3y
A(0,4) = 0 + 3(4)= 12
D(4,0) = 4 + 3(0) = 4
E(2,3) = 2 + 3(3) = 11
Maksimum = 12
13.
Jeruk = x
Jambu = y
daya tampung --> x + y ≤ 40
modal --> 12.000x + 10.000 y ≤ 450.000
sederhanakan --> 6x + 5y ≤ 225
syarat x ≥0, y ≥0
model
x + y ≤40
6x + 5y ≤225
x ≥ 0
y ≥ 0
.
grafik dilampiran / gambar dibawah