Jika diketahui suku ke-n dari deret aritmatika adalah Un=logk^n, k konstanta positif, tentukan jumlah n suku pertama deret tersebut!
subebe
U1 = logk^1 u1 = a = log k u2 = log k^2 u2 = 2 log k beda = 2log k - log k = log k^2 - log k = log (k^2/k) = log k Sn = n/2 (2 log k + (n - 1) log k) Sn = n/2 ( log k^2 + log k^(n-1)) Sn = n/2 ( log K^2 x k^ (n-1)) Sn = n/2 ( log k^(n+1) Sn = n/2 x (n + 1) log k Sn = (n^2 + 1)/ 2 log K
u1 = a = log k
u2 = log k^2
u2 = 2 log k
beda = 2log k - log k
= log k^2 - log k
= log (k^2/k)
= log k
Sn = n/2 (2 log k + (n - 1) log k)
Sn = n/2 ( log k^2 + log k^(n-1))
Sn = n/2 ( log K^2 x k^ (n-1))
Sn = n/2 ( log k^(n+1)
Sn = n/2 x (n + 1) log k
Sn = (n^2 + 1)/ 2 log K