Jawaban:
cmiiw
Penjelasan dengan langkah-langkah:
3x² + x + 2 = 0
a = 3
b = 1
c = 2
a. a² + b²
= (a + b)² - 2ab
= (-b/a)² - 2(c/a)
= (-1/3)² - 2(2/3)
= 1/9 - 4/3
= 1/9 - 12/9
= -11/9
b. (a - 2)² + (b - 2)²
= a² - 4a + 4 + b² - 4b + 4
= a² + b² - 4a - 4b + 8
= (a² + b²) - 4(a + b) + 8
= (a + b)² - 2ab - 4(a + b) + 8
= (-b/a)² - 2(c/a) - 4(-b/a) + 8
= (-1/3)² - 2(2/3) - 4(-1/3) + 8
= 1/9 - 4/3 + 4/3 + 8
= 1/9 + 8
= 73/9
a dan b dalam jawaban bermaksud alpha dan beta.
x1 + x2 = -b/a
x1 . x2 = c/a
Jika α dan β akar-akar persamaan 3x² + x + 2 = 0, maka:
[tex]\begin{aligned}\sf a.\ &\alpha^2+\beta^2=\,\boxed{\,\bf{-}\frac{11}{9}\,}\\\vphantom{\Bigg|}\sf b.\ &(\alpha-2)^2+(\beta-2)^2=\,\boxed{\,\bf\frac{73}{9}\,}\,=\,\boxed{\,\bf8\,\frac{1}{9}\,}\\\vphantom{\Bigg|}\sf c.\ &\alpha^2\beta+\alpha\beta^2=\,\boxed{\,\bf{-}\frac{2}{9}\,}\\\sf d.\ &\frac{1}{\alpha+1}+\frac{1}{\beta+1}=\,\boxed{\,\bf\frac{5}{4}\,}\,=\,\boxed{\,\bf1\,\frac{1}{4}\,}\end{aligned}[/tex]
Akar-akar Persamaan Kuadrat
Jika α dan β akar-akar persamaan 3x² + x + 2 = 0 maka:
Soal a
[tex]\begin{aligned}\alpha^2+\beta^2&=(\alpha+\beta)^2-2\alpha\beta\\&=\left(-\frac{1}{3}\right)^2-2\left(\frac{2}{3}\right)\\&=\frac{1}{9}-\frac{4}{3}\\&=\frac{1-12}{9}\\\alpha^2+\beta^2&=\boxed{\,\bf{-}\frac{11}{9}\,}\end{aligned}[/tex]
Soal b
[tex]\begin{aligned}&(\alpha-2)^2+(\beta-2)^2\\&{=\ }\alpha^2-4\alpha+4+\beta^2-4\beta+4\\&{=\ }\underbrace{\alpha^2+\beta^2}_{\begin{matrix}\sf soal\ a\end{matrix}}-4(\alpha+\beta)+8\\&{=\ }{-}\frac{11}{9}-4\left(-\frac{1}{3}\right)+8\\&{=\ }{-}\frac{11}{9}+\frac{4}{3}+8\\&{=\ }\frac{-11+12+72}{9}\\&{=\ }\frac{1+72}{9}\\&{=\ }\boxed{\,\bf\frac{73}{9}=8\,\frac{1}{9}\,}\end{aligned}[/tex]_____________
Sekaligus untuk soal lanjutannya di pertanyaan lain.
Soal c
[tex]\begin{aligned}\alpha^2\beta+\alpha\beta^2&=(\alpha\beta)(\alpha+\beta)\\&=\frac{2}{3}\cdot\left(-\frac{1}{3}\right)\\\alpha^2\beta+\alpha\beta^2&=\boxed{\,\bf{-}\frac{2}{9}\,}\end{aligned}[/tex]
Soal d
[tex]\begin{aligned}&\frac{1}{\alpha+1}+\frac{1}{\beta+1}\\&{=\ }\frac{\beta+1}{(\alpha+1)(\beta+1)}+\frac{\alpha+1}{(\alpha+1)(\beta+1)}\\&{=\ }\frac{\alpha+1+\beta+1}{(\alpha+1)(\beta+1)}\\&{=\ }\frac{\alpha+\beta+2}{\alpha\beta+\alpha+\beta+1}\\&{=\ }\frac{-\dfrac{1}{3}+2}{\dfrac{2}{3}+\left(-\dfrac{1}{3}\right)+1}\\&{=\ }\frac{3\cdot\left(-\dfrac{1}{3}+2\right)}{3\cdot\left(\dfrac{2}{3}-\dfrac{1}{3}+1\right)}\\&{=\ }\frac{-1+6}{2-1+3}\\&{=\ }\boxed{\,\bf\frac{5}{4}=1\,\frac{1}{4}\,}\end{aligned}[/tex][tex]\blacksquare[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
cmiiw
Penjelasan dengan langkah-langkah:
3x² + x + 2 = 0
a = 3
b = 1
c = 2
a. a² + b²
= (a + b)² - 2ab
= (-b/a)² - 2(c/a)
= (-1/3)² - 2(2/3)
= 1/9 - 4/3
= 1/9 - 12/9
= -11/9
b. (a - 2)² + (b - 2)²
= a² - 4a + 4 + b² - 4b + 4
= a² + b² - 4a - 4b + 8
= (a² + b²) - 4(a + b) + 8
= (a + b)² - 2ab - 4(a + b) + 8
= (-b/a)² - 2(c/a) - 4(-b/a) + 8
= (-1/3)² - 2(2/3) - 4(-1/3) + 8
= 1/9 - 4/3 + 4/3 + 8
= 1/9 + 8
= 73/9
a dan b dalam jawaban bermaksud alpha dan beta.
x1 + x2 = -b/a
x1 . x2 = c/a
Verified answer
Jika α dan β akar-akar persamaan 3x² + x + 2 = 0, maka:
[tex]\begin{aligned}\sf a.\ &\alpha^2+\beta^2=\,\boxed{\,\bf{-}\frac{11}{9}\,}\\\vphantom{\Bigg|}\sf b.\ &(\alpha-2)^2+(\beta-2)^2=\,\boxed{\,\bf\frac{73}{9}\,}\,=\,\boxed{\,\bf8\,\frac{1}{9}\,}\\\vphantom{\Bigg|}\sf c.\ &\alpha^2\beta+\alpha\beta^2=\,\boxed{\,\bf{-}\frac{2}{9}\,}\\\sf d.\ &\frac{1}{\alpha+1}+\frac{1}{\beta+1}=\,\boxed{\,\bf\frac{5}{4}\,}\,=\,\boxed{\,\bf1\,\frac{1}{4}\,}\end{aligned}[/tex]
Penjelasan dengan langkah-langkah:
Akar-akar Persamaan Kuadrat
Jika α dan β akar-akar persamaan 3x² + x + 2 = 0 maka:
α + β = –b/a = –1/3
αβ = c/a = 2/3
Soal a
[tex]\begin{aligned}\alpha^2+\beta^2&=(\alpha+\beta)^2-2\alpha\beta\\&=\left(-\frac{1}{3}\right)^2-2\left(\frac{2}{3}\right)\\&=\frac{1}{9}-\frac{4}{3}\\&=\frac{1-12}{9}\\\alpha^2+\beta^2&=\boxed{\,\bf{-}\frac{11}{9}\,}\end{aligned}[/tex]
Soal b
[tex]\begin{aligned}&(\alpha-2)^2+(\beta-2)^2\\&{=\ }\alpha^2-4\alpha+4+\beta^2-4\beta+4\\&{=\ }\underbrace{\alpha^2+\beta^2}_{\begin{matrix}\sf soal\ a\end{matrix}}-4(\alpha+\beta)+8\\&{=\ }{-}\frac{11}{9}-4\left(-\frac{1}{3}\right)+8\\&{=\ }{-}\frac{11}{9}+\frac{4}{3}+8\\&{=\ }\frac{-11+12+72}{9}\\&{=\ }\frac{1+72}{9}\\&{=\ }\boxed{\,\bf\frac{73}{9}=8\,\frac{1}{9}\,}\end{aligned}[/tex]
_____________
Sekaligus untuk soal lanjutannya di pertanyaan lain.
Soal c
[tex]\begin{aligned}\alpha^2\beta+\alpha\beta^2&=(\alpha\beta)(\alpha+\beta)\\&=\frac{2}{3}\cdot\left(-\frac{1}{3}\right)\\\alpha^2\beta+\alpha\beta^2&=\boxed{\,\bf{-}\frac{2}{9}\,}\end{aligned}[/tex]
Soal d
[tex]\begin{aligned}&\frac{1}{\alpha+1}+\frac{1}{\beta+1}\\&{=\ }\frac{\beta+1}{(\alpha+1)(\beta+1)}+\frac{\alpha+1}{(\alpha+1)(\beta+1)}\\&{=\ }\frac{\alpha+1+\beta+1}{(\alpha+1)(\beta+1)}\\&{=\ }\frac{\alpha+\beta+2}{\alpha\beta+\alpha+\beta+1}\\&{=\ }\frac{-\dfrac{1}{3}+2}{\dfrac{2}{3}+\left(-\dfrac{1}{3}\right)+1}\\&{=\ }\frac{3\cdot\left(-\dfrac{1}{3}+2\right)}{3\cdot\left(\dfrac{2}{3}-\dfrac{1}{3}+1\right)}\\&{=\ }\frac{-1+6}{2-1+3}\\&{=\ }\boxed{\,\bf\frac{5}{4}=1\,\frac{1}{4}\,}\end{aligned}[/tex]
[tex]\blacksquare[/tex]