Penjelasan dengan langkah-langkah:
1.b
[tex] {4}^{ {x}^{2} - 3x + 2 } = 1 \\ {\cancel4}^{ {x}^{2} - 3x + 2 } = {\cancel4}^{0} \\ {x}^{2} - 3x + 2x = 0 \\ (x - 1)(x - 2) = 0 \\ x_{1} = 1 \\ x_{2} = 2[/tex]
Karena x2 = 2 tidak memenuhi ,
maka nilai x nya adalah x1 = 1
2.b
[tex] {9}^{ {x}^{2} + x + 1 } = 2 {7}^{ {x}^{2} + x} \\ \\ {3}^{2( {x}^{2} + x + 1) } = {3}^{3( {x}^{2} + x)} \\ 2( {x}^{2} + x + 1) = 3( {x}^{2} + x) \\ {2x}^{2} + 2x + 2 = {3x}^{2} + 3x \\ 2 {x}^{2} - 3 {x}^{2} + 2x - 3x + 2 = 0 \\ - {x}^{2} - x + 2 = 0 \\ ( - x + 1)(x + 2) = 0 \\ \\ x_{1} = 1 \\ x_{2} = - 2[/tex]
2.d
[tex] {2}^{ {x}^{2} - x - 2 } = {2}^{3( {x}^{2} - x - 2) } \\ {x}^{2} - x - 2 = 3( {x}^{2} - x - 2) \\ {x}^{2} - x - 2 = 3 {x}^{2} - 3x - 6 \\ {x}^{2} - 3 {x}^{2} - x + {3x} - 2 + 6 = 0 \\ - 2 {x}^{2} + 2x + 4 = 0 \\ ( 2x + 2)( - x + 2) = 0 \\ \\ x_{1} = - 1 \\ x_{2} = 2[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
1.b
[tex] {4}^{ {x}^{2} - 3x + 2 } = 1 \\ {\cancel4}^{ {x}^{2} - 3x + 2 } = {\cancel4}^{0} \\ {x}^{2} - 3x + 2x = 0 \\ (x - 1)(x - 2) = 0 \\ x_{1} = 1 \\ x_{2} = 2[/tex]
Karena x2 = 2 tidak memenuhi ,
maka nilai x nya adalah x1 = 1
2.b
[tex] {9}^{ {x}^{2} + x + 1 } = 2 {7}^{ {x}^{2} + x} \\ \\ {3}^{2( {x}^{2} + x + 1) } = {3}^{3( {x}^{2} + x)} \\ 2( {x}^{2} + x + 1) = 3( {x}^{2} + x) \\ {2x}^{2} + 2x + 2 = {3x}^{2} + 3x \\ 2 {x}^{2} - 3 {x}^{2} + 2x - 3x + 2 = 0 \\ - {x}^{2} - x + 2 = 0 \\ ( - x + 1)(x + 2) = 0 \\ \\ x_{1} = 1 \\ x_{2} = - 2[/tex]
2.d
[tex] {2}^{ {x}^{2} - x - 2 } = {2}^{3( {x}^{2} - x - 2) } \\ {x}^{2} - x - 2 = 3( {x}^{2} - x - 2) \\ {x}^{2} - x - 2 = 3 {x}^{2} - 3x - 6 \\ {x}^{2} - 3 {x}^{2} - x + {3x} - 2 + 6 = 0 \\ - 2 {x}^{2} + 2x + 4 = 0 \\ ( 2x + 2)( - x + 2) = 0 \\ \\ x_{1} = - 1 \\ x_{2} = 2[/tex]